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Abstract—Recent advances in deep convolutional neural net-
works have enabled convenient diet tracking exploiting photos
captured with smartphone cameras. However, most of the cur-
rent diet tracking apps focus on recognizing solid foods while
omitting drinks despite their negative impacts on our health
when consumed without moderation. After an extensive analysis
of drink images, we found that such an absence is due to
the following challenges that conventional convolutional neural
networks trained under the single-task learning framework
cannot easily handle. First, drinks are amorphous. Second,
visual cues of the drinks are often occluded and distorted by
their container properties. Third, ingredients are inconspicuous
because they often blend into the drink. In this work, we present
a healthy drink classifier trained under a hierarchical multi-task
learning framework composed of a shared residual network with
hierarchically shared convolutional layers between similar tasks
and task-specific fully-connected layers. The proposed structure
includes two main tasks, namely sugar level classification and
alcoholic drink recognition, and six auxiliary tasks, such as
classification and recognition of drink name, drink type, branding
logo, container transparency, container shape, and container
material. We also curated a drink dataset, Drink101, composed
of 101 different drinks including 11,445 images overall. Our ex-
perimental results demonstrate improved classification precision
compared to single-task learning and baseline multi-task learning
approaches.

I. INTRODUCTION

Drinking sugar-sweetened and alcoholic drinks may be
pleasing, but it is detrimental to our health when consumed
without moderation. Many studies, including ones from the
School of Public Health at Harvard University1, have shown
that frequent consumption of unhealthy drinks could lead to
the development of obesity epidemic, metabolic syndrome,
fatty liver diseases, and brain damages [1], [2]. In fact,
dietitians and clinicians emphasize the importance of making
healthier drink choices to curb their detrimental effects [3].
However, many people have misconceptions about what is
healthy and what is not [4]. For example, fruit juices are often
perceived as healthy when most of them are loaded with as
much sugar as a sugary soft drink.

One of the promising ways to help make healthier drink
choices is to use photo-based mobile diet logging and tracking
applications that increase users’ awareness of their behaviors,

1https://www.hsph.harvard.edu/nutritionsource/healthy-drinks/sugary-
drinks/

thus promoting healthy behavior changes [5], [6]. However,
none of the state-of-the-art applications present a feasible
drink classifier accurate enough to successfully categorize the
healthiness of drinks. After an extensive analysis of drink
images and related studies, we found that such an absence
is due to the following properties of drinks.

Unlike solid foods, drinks conform to the shape of their
containers and thus have higher visual variance. Also, visual
cues are often distorted, occluded, and limited by various
container properties. For example, bottles may be colored
or covered with branding materials distorting and occluding
visual cues. In case of a ceramic cup or a mug, visual cues are
only marginally evident through the top of the container. Such
properties contribute to higher intra-class variances (same
drink looks very different) and lower inter-class variances
(different drinks look very similar) compared to solid food
items. Furthermore, the nutrient composition of a drink is
almost impossible to correctly identify when automated sys-
tems are used without user intervention because ingredients
often blend into the drink. Despite the recent advances in
convolutional neural networks (CNN), such properties are
extremely challenging to address when a classifier is trained
under single-task learning (STL) framework [7], [8].

To address this challenging computer vision problem, we
consider employing a multi-task learning (MTL) framework
which has been demonstrated to be feasible across many ap-
plications of machine learning, e.g., computer vision [7], [9]–
[13] and natural language processing [14]. Unlike STL, MTL
shares representations between different, yet related, tasks
through shared network architectures in order to help improve
the performance of the primary tasks [15]. In fact, MTL ar-
chitectures, employing CNNs, have successfully demonstrated
their feasibility in addressing diet related problems, such
as cooking recipe retrieval [7] and dietary assessment [13].
Most of these works employed a simple structure of shared
convolutional layers and task-specific fully-connected layers.
However, numerous studies have emphasized the importance
of considering the hierarchical relationship between different
tasks since all tasks are not equally related and do not share
similar representation [16]–[18].

In this work, we propose a healthy drink classifier using
hierarchical multi-task learning (HMTL) framework composed



It is a dairy type beverage 
called strawberry 

milkshake served in a 
transparent glass cup 
without logo, which is 

high in sugar and does not
have alcohol in it

It is a beer type beverage 
called ale served in a 

semi-transparent glass 
bottle with logo, which 

has no sugar but has 
alcohol in it

It is a coffee type 
beverage called brewed 

coffee served in a opaque 
ceramic mug with logo, 
which has no sugar and

alcohol in it

Fig. 1: Healthy drink classification example showing the
inferred attributes of the drink, which can be used to determine
its healthiness.

of a shared residual network and shared hierarchical convo-
lutional layers between similar tasks and task-specific fully-
connected layers. Two primary tasks, namely sugar level
classification and alcoholic drink recognition, are used to cat-
egorize the healthiness of a drink considering their significant
impact on our health. In addition, we introduce six auxiliary
tasks, including classification and recognition of drink name,
drink type, branding logo, container transparency, container
shape, and container material. Examples of inferred drink
attributes are shown in Figure 1.

Note that we do not attempt to explicitly measure the
amount of sugar or alcohol in drinks, which cannot be done
with a system solely relying on drink images. Furthermore, the
ultimate decision on whether a drink is healthy or not should
be made by the end users and domain experts. The significance
of drinking unhealthy beverages varies by individual, e.g.,
drinking a Coke can be dangerous for diabetic patients while
others might not feel the same effect.

We also curated a drink dataset, Drink101, composed of
101 different drinks including a total of 11,445 images.
Our experimental results demonstrate improved classification
precision compared to single-task learning and baseline multi-
task learning approaches. In summary, our main contributions
are as follows:

• We propose multiple drink attributes and exploit their hi-
erarchical relationships through shared convolutional lay-
ers, demonstrating accurate classification performances

• We propose a healthy drink classifier exploiting hierar-
chical multi-task learning (HMTL) framework

• We curate a drink dataset called Drink101 and make it
available to the public

II. RELATED WORK

The proposed healthy drink classifier encompasses several
strands of research, such as diet recognition, multi-task learn-
ing, and hierarchical relationship of different tasks.

A. Diet Recognition and Dataset

Numerous diet recognition technologies exploiting con-
ventional single-task CNN (SCNN) have been proposed in
recent years. This includes several mobile applications, such
as Nibble [6] and Im2Calories [19]. Various other works have
also demonstrated accurate diet recognition models, such as
DeepFood [20], FoodAi2, NutriNet [8], and DietLens [7].
However, none of these technologies can accurately recognize
drinks due to two major issues. First, drinks have high visual
variations [7], [8]. Second, drinks are often omitted or treated
as a sub-type of foods from various datasets. For example,
Food101 [21], FoodLog [22] and UEC256 [23] do not include
any drink items while VIREO [24], and NutriNet [8] cover
very small number of drink categories. ChinFood1000 [25]
claims to include 91 drink categories out of 1,000 classes,
but this is a proprietary dataset. Therefore, motivated by the
significance of making healthier drink choices and the absence
of feasible technologies, we propose a healthy drink classifier
and a drink image dataset, Drink101.

B. MTL and Hierarchical Relationship of Tasks

By simultaneously learning different yet related tasks using
shared deep neural network layers, Multi-task learning (MTL)
has been demonstrated to be effective across various ma-
chine learning applications, including computer vision [10]–
[12] and natural language processing [14]. In fact, Chen et.
al. demonstrated that food recipes can be better retrieved
using MTL with related tasks, namely food categorization,
ingredient recognition, and cooking method recognition [7].
Furthermore, a dietary assessment technique was introduced
very recently exploiting MTL capabilities [13].

However, all tasks are not equally related and do not
share exactly the same representations [15], [17]. Multiple
studies have demonstrated the feasibility and necessity of
embedding the hierarchical relationship of different tasks to
address complex and challenging machine learning problems.
For example, a hierarchical Bayesian model exploiting a latent
task hierarchy was proposed recently [17]. A Joint Many-Task
Model proposed the use of pre-defined hierarchical architec-
ture composed of several natural language tasks as a model
for MTL [16]. HD-CNN was proposed to demonstrate the
feasibility of hierarchical deep convolutional neural networks
for large scale visual recognition [26]. Furthermore, Lu et. al.
introduced a fully-adaptive feature sharing technique for deep
multi-task networks which automatically identifies feasible
hierarchical relationships among different tasks [9].

III. MULTI-TASK DEEP LEARNING

Due to the limited visual cues in drink images, training a
CNN on the task of healthy drink classification would entail
significant parameter tuning, optimization and large number
of iterations to achieve acceptable performances. However,
such a fine-tuned model is prone to overfitting. In our work,
we formulate healthy drink classification as a multi-task deep

2http://foodai.org/
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Fig. 2: The six architectures we considered for MTL. These are modifications of ResNet34 (shown on the left) which is
described in [27]. ‘fc’ denotes a fully connected layer, B1 denotes one residual block consisting of two convolutional layers
and B2 denotes two residual blocks.

learning problem where the two primary tasks are coupled
with six auxiliary tasks for simultaneous learning. Details of
each task and the proposing HMTL architecture are described
in the following sub-sections.

A. The Primary and the Auxiliary Tasks
Our work employs two primary tasks, sugar level classifi-

cation and alcoholic drink recognition, which can be used to
determine whether a drink is healthy or not. To improve the
classification and recognition performances, we identify and
utilize six auxiliary tasks, namely, drink name classification,
drink type classification, branding logo recognition, container
transparency classification, container shape classification, and
container material classification. These auxiliary tasks provide
additional contexts to the visual cues and additional knowledge
regarding the relationships of different drinks.

The drink name is the most fine-grained measure for clas-
sifying the healthiness of the drink. Training a STL model on
drink names is the typical way of training food classification
models [21]. However, due to a large number of drink name
categories and limited visual cues, a STL framework trained
on drink name alone will have poor classification accuracy.
Instead, we leverage the representation learned from this task
to improve the performance of the primary tasks.

The drink type is of coarser granularity than drink name.
This generalizes the categorization of drinks into common
drink types, such as coffee, dairy, juice, and soda among
others. We determined the categorization from a thematic
analysis after analyzing thousands of drink names. Therefore,
this represents knowledge external to the drink images and
facilitates the model to draw correlations by external supervi-
sory information over and above the visual cues obtained from

drink image alone. Just as generalizations of drink names into
these types can help people quickly infer the drink healthiness,
we hypothesize that providing these knowledge associations
will help to improve the speed of training and model accuracy
for drink healthiness.

The third auxiliary task is of branding logo recognition. This
task is not to identify what is written in the logo but only to
infer if there is a logo in the drink image. The intuition for
this task is that the model will learn to draw correlations such
as the fact that logos are usually present in branded drinks and
such drinks typically tend to have high sugar level and/or are
alcoholic.

The fourth, fifth and sixth auxiliary tasks pertain to the
attributes of the container in which the drink is kept. Some
drinks are typically served or consumed in specific containers.
For example, wine is typically served in a wineglass, coffee
in a mug, and cans typically contain soda. In fact, recognizing
a wineglass should increase the likelihood that the drink is
alcoholic. This association can help with identifying the drink
name or type and consequently the drink healthiness. Unlike
drink type, drink container is determined from the visual cues
in the image. We manually generated labels of drink container
attributes, namely transparency, shape, and material in our
image dataset. In this work, we did not specify generic names
of different containers but described their appearance through
three tasks including transparency, shape, and material. For
example, a glass beer mug would be labeled as transparent,
cup with handle, and glass.

B. Architecture Design
From the above discussion, it is clear that all the eight tasks

are different, yet have a high correlation to support other tasks.



This motivates the use of private layers for each task and some
shared layers for all the tasks in a CNN. The influence of one
task over another is modeled through the learning of parame-
ters in the shared layers. In potential CNN architectures, the
initial convolutional layers should be globally shared among
all task because we need the fundamental visual features to be
available to all the tasks of the network. This helps ensure that
no task remains significantly under-learned (i.e., insufficiently
trained) during training.

In our case, since the eight tasks widely differ in the number
of class labels, so the rate of successful training on the eight
tasks is different. Hence, we have at least one block of fully
connected (FC) layers privately for each task in order that
the training of one task does not become a bottleneck to the
training of the other tasks.

After analyzing numerous studies on multi-task CNN
(MCNN), we postulate that having private convolutional layers
for each task (or shared by only a subset of all tasks) is
essential because different shapes or visual features may be
significant for specific tasks. Guided by this intuition, we
design various MTL architectures, incorporating hierarchical
design, as described in Figure 2. In the hierarchical structures
(Models D, E and F), the rationale for shared convolutional
layers lower in the hierarchy is to capture global features rel-
evant for larger groups of tasks while the convolutional layers
shared among tasks higher up in the hierarchy are expected to
incorporate local features relevant for smaller groups of tasks.
We group tasks by leveraging semantic relations between them
as described below.

Model-A has only one private FC layer for each task and
shares all convolutional layers. In addition to private FC
layers, Model-B includes two private residual blocks for each
task, because we hypothesize that different shapes or visual
features may be significant for specific tasks. For example,
the drink container classifier may learn a cup handle concept,
but this is not relevant for drink types or drink names; a drink
type classifier may learn an effervescence (bubbles) texture to
recognize soda or beer, but this would be less relevant for the
drink container classifier.

Model-C adopts a hybrid-split structure by sharing the
final residual block between semantically related tasks. In
this model, two primary tasks (sugar level classification and
alcoholic drink recognition) share two residual blocks (B2)
since both aim to detect ingredients in the drink for which
visual cues are not conspicuous. Separate B2s are also shared
between drink name and drink type classification tasks, and
among branding logo recognition and the three tasks of
container property identification. We extend this intuition in
models D, E and F by having hierarchically shared convolution
layers among different task groups. Indeed, we demonstrate
empirically that the hierarchical architectures (D, E, and F)
achieve the best performance.

C. Implementation

Residual networks (ResNet) [27] have been particularly
successful in image recognition tasks, and we implement our

system to be composed of shared residual blocks. The primary
reason for their high performance is that by virtue of the
short-circuit connections, a sufficiently deep architecture can
also be trained well. The backbone architecture on which we
build our model is ResNet34. In Figure 2, the architecture
up to the globally shared residual blocks is exactly the
same as ResNet34. Since all the eight tasks are multi-class
classification problems, we compute the cross-entropy loss of
individual tasks and combine them to form the global loss.
Let N denote the total number of images during training and
T denote the total number of tasks, which is 8 in our case.
The global loss function is then defined as:

L = − 1

N

N∑
i=1

T∑
t=1

γtLt (1)

where, γ1, ....., γ8 are weighing parameters for the individual
losses such that

∑8
t=1 γt = 1. We train our network to back-

propagate gradients from the global loss function into all
the eight branches and the shared layers. Let pic denote the
probability of observation i (i.e. the ith image) being classified
in category c and let yic be a binary label whose value is 1 if
class c is indeed correct for image i. Now, Lt can be defined
as:

Lt = −
C∑

c=1

yiclog(p
i
c) (2)

The formulation of each Lt∀t ∈ [1, ..., 8] is similar. With the
above loss functions, we perform experiments with the pro-
posed architectures in Figure 2 as described in the Experiments
section. In our implementation, in order to leverage the benefits
of a residual network, instead of having the basic block as
one convolutional layer, ReLU, and MaxPool combination,
we use a residual block [27] as the smallest building unit in
the architecture. As illustrated in Figure 2, B2 indicates two
residual blocks while B1 refers to one residual block.

IV. DRINK IMAGE DATASET: DRINK101

A well-curated image dataset is essential for evaluating a
healthy drink classifier, to implement a sound training routine,
and to extract representative information of suitable features.
In this section, we describe how we curated and labeled our
drink image dataset, Drink1013.

A. Curating Drink101

To determine a list of drinks to collect images of, we
searched for most frequently consumed beverages in the world
and collected images from various search engines, including
Google, Baidu, Flickr, and Instagram. Next, we analyzed
collected images to identify the prevalent and representative
container types for each drink. For example, we found that
Coke was frequently served in a can and a transparent bottle
with a branding logo. To ensure the quality of the dataset,
we filtered out blurry images, consisted of multiple types of
drinks and containers, and were composed of other objects

3Please contact the authors for the access



that are more prominent than the drink itself (e.g., person’s
face or solid food item). Note that our dataset also includes
numerous professionally photographed images. After going
through the curation processes, our dataset finally includes
101 unique drink names (130 unique combinations of drink
name and container type) and 11,445 images overall.

B. Drink Healthiness

The healthiness of each drink category is described using
two attributes, namely sugar level and alcoholic. According to
the guidelines proposed by School of Public Health at Harvard
University4, drinks can be tagged with one of three labels,
namely red, yellow, and green, representing drinks with high
sugar level (>1g of sugar per ounce) to be drunk “sparingly
or infrequently,” drinks with low sugar level (<1g/oz) as a
“better choice,” and drinks with little or no sugar (∼0g/oz)
as the “best choice,” respectively. Additionally, we include
another label named alcoholic due to its negative impact on
our health. Other than having high calories, alcohol can cause
minor issues, such as drowsiness, headaches, and anemia, or
major problems, including coma, nerve damage, liver damage,
and other heart-related diseases, when consumed for a long
time [2]. We determine the sugar level and alcoholic nature
of each drink from the nutrient dataset of MyFitnessPal5 and
Health Promotion Board of Singapore6.

C. Statistics of Drink101

Each category is labeled with various attributes, namely
sugar level (no, low, and high), alcohol (present and absent),
drink type (coffee, dairy, juice, soda, tea, water, beer, spirit,
and wine), branding logo (present and absent), container trans-
parency (opaque, semi-transparent, and transparent), container
shape (bottle, can, cup, cup with handle, cup with stem,
and pack), and container material (aluminum, ceramic, glass,
paper, plastic). The statistics for each attribute are as follows.
Sugar level – no sugar 34.6%, low sugar 13.8%, and high
sugar 51.5%. Alcohol – present 28.5% and absent 71.5%.
Drink type – coffee 6%, dairy 12%, juice 15%, soda 21%, tea
11%, water 4%, beer 3%, spirit 20%, and wine 4%. Branding
logo – present 38% and absent 62%. Container transparency
– opaque 21%, semi-transparent 7%, and transparent 72%.
Container shape – bottle 23%, can 8%, cup 45%, cup with
handle 12%, cup with stem 10%, and pack 2%. Container
material – aluminum 8%, ceramic 8%, glass 63%, paper 2%,
and plastic 19%.

V. EXPERIMENTS

In this section, we evaluate the accuracy of our hierarchical
multi-task learning (HMTL) framework for healthy drink
classification with respect to several baselines. We train our
model on both single tasks and all combinations of multiple
tasks and observe the results from each mode of training. Since
our primary task is to classify the healthiness of drinks, we

4https://www.hsph.harvard.edu/nutritionsource/healthy-drinks/
5https://www.myfitnesspal.com/
6http://focos.hpb.gov.sg/eservices/ENCF/

present our results mainly in terms of sugar level classification
and alcoholic drink recognition and report the accuracy on
auxiliary tasks (drink type, drink name, branding logo, and
drink container attributes) where appropriate. We show that
our HMTL framework helps in making better predictions on
the two primary tasks as compared to learning them alone
through an SCNN or non-hierarchical MTL architectures. We
trained our proposed and baseline models on 80% (randomly
selected images) of the full Drinks101 dataset and tested on
the remaining 20%.

A. Comparison against STL Architectures

To verify whether MTL is suitable for healthy drink classi-
fication, we first train STL models for each task and compare
them against MTL models shown in Figure 2. Our experiment
results shown in Table I indicate that the precision@k (P@k)
value for each STL model is relatively lower than that of MTL
models. Specifically, P@1 values of the primary tasks (sugar
level and alcohol) are higher in all MTL models compared to
the respective STL counterparts. For example, there is a 3%
increase in P@1 for the sugar level classification task from
STL-Sugar to Model-A, and a 12% increase for Model-F. In
case of alcoholic drink recognition there is a 5% increase in
P@1 from STL-Alcohol to Model-A and a 16% increase for
Model-F. This substantiates our claim for the use of MTL
architectures. Another interesting observation from Table I
is the fact that the precision values of all other (auxiliary)
tasks also increase from STL to the MTL setting although by
varying magnitudes. This suggests that the tasks of sugar-level
detection and alcoholic drink recognition have not improved
at the cost of the other tasks, but along with them.

B. Comparison among MTL Architectures

To identify the most feasible MTL architecture for healthy
drink classification, we train and evaluate all models shown
in Figure 2. In addition, we also implement and evaluate
a MTL architecture proposed by Chen et. al. [28] to com-
pare its feasibility against our models. Differing from our
work, Chen et. al. used a VGG-16 network with task-specific
fully-connected layers. We denote this architecture as MTL-
VGG in the remaining part of this section. Furthermore, we
also implemented an automatic tensor decomposition method
(Tensor-Fact) proposed in [29] which is one of the state-of-
the-art adaptive HMTL frameworks. A number of other HMTL
solutions are not included in our evaluation since we cannot
make apples-to-apples comparisons due to the different prob-
lem formulations. Note that all performance measurements
shown in Table I are drawn from optimal γt∀t ∈ [1, ..., 8]
arrived at after conducting a grid search in the range [0,1].

As evident in Table I, the P@1 values of Model-F for both
sugar-level classification and alcoholic drink recognition are
the highest. Overall, the hierarchical structures D, E and F
perform much better than the other models. This performance
enhancement is evident not just on the two primary tasks
but also on the auxiliary tasks. We attribute this improved
performance to better collaboration between tasks. The shared



TABLE I: Comparison of Precision@k for various tasks with different architectures. For STL, a separate network per task
was used for training. MTL-VGG is a VGG based architecture [28] trained on all eight tasks. Tensor-Fact is an adaptive MTL
method proposed in [29], which we apply to the ResNet34 architecture. Model-A has private FC layers alone for each task,
model B has private residual block for each task, model C has private residual blocks for groups of tasks. Models D, E and F
are hierarchical structures, with different hierarchies of residual blocks shared between tasks. All the architectures are described
in Figure 2.

Model Sugar
Level Alcohol Drink

Name
Drink
Type Logo Trans-

parency Shape Material

P@1 P@1 P@1 P@2 P@1 P@2 P@1 P@1 P@1 P@1

STL-Sugar 0.77 x x x x x x x x x
STL- Alcohol x 0.74 x x x x x x x x

STL-DrinkName x x 0.33 0.36 x x x x x x
STL-DrinkType x x x x 0.43 0.50 x x x x

STL-Logo x x x x x x 0.62 x x x
STL-Transparency x x x x x x x 0.33 x x

STL-Shape x x x x x x x x 0.33 x
STL-Material x x x x x x x x x 0.34

Tensor-Fact 0.83 0.84 0.39 0.44 0.41 0.51 0.72 0.38 0.36 0.38
MTL-VGG 0.79 0.76 0.36 0.38 0.44 0.53 0.68 0.34 0.35 0.36

Model-A 0.80 0.79 0.35 0.39 0.43 0.55 0.67 0.36 0.37 0.35
Model-B 0.81 0.81 0.37 0.44 0.45 0.51 0.67 0.35 0.46 0.37
Model-C 0.83 0.84 0.36 0.45 0.46 0.57 0.62 0.37 0.45 0.37
Model-D 0.85 0.86 0.36 0.48 0.46 0.58 0.68 0.38 0.47 0.38
Model-E 0.86 0.85 0.37 0.45 0.44 0.49 0.73 0.36 0.42 0.49
Model-F 0.89 0.90 0.41 0.43 0.47 0.54 0.69 0.42 0.44 0.43

residual blocks in the higher layers are responsible for extract-
ing global features relevant for large groups of tasks while the
penultimate residual blocks are responsible for extracting local
features relevant for specific small groups of tasks. Figure 3
shows the convergence of each model during training. We see
that Model-F convergences to the lowest validation loss during
training, indicating that it is the fastest to train in addition to
converging at a better optima.

From Table I, it is also evident that Models B and C perform
better than Model-A re-affirming our belief that there are task-
specific relevant features which are best extracted by having
private residual blocks for groups of tasks (in Model-C) or
for each task (in Model-B). In Model-A, there is no scope for
incorporation of task-specific features since only FC layers are
private. The improved performance of Model-C compared to
Model-B is indicative of the fact that the semantic grouping
of tasks for sharing residual blocks helps in better leveraging
of features from drink images between tasks.

We trained MTL-VGG on the drink dataset with tuned
hyper-parameters, but found it to have lower precision for the
primary tasks than Models B, C, D, E and F. This might be
because of superior learning ability of residual nets to better
propagate the gradients in light of insufficient contextual cues.
Another reason could be the sharing of only-fully connected
layers, which might not be a problem with food images due
to abundant visual cues but fails to perform well with drinks.

Another interesting result is that the Tensor-Fact model
performs much worse compared to model F on all the tasks.
This is primarily because the automatic tensor decomposition
method proposed in [29] is not scalable to large networks

Fig. 3: Comparison of convergence of each of the MTL
models, i.e. Model-A to Model-F, during training. The plot
shows variation of test error with number of training epochs.

(for example a residual network as used in our work) due
to combinatorial explosion of many possible connections.
Moreover, the method does not distinguish between primary
and auxiliary tasks and hence does not have tunable parameters
for appropriately weighing the tasks.

C. Impact of Hyper-parameter γ

The feasibility of MTL models is further demonstrated by
analyzing the impact of hyper-parameter γ. First, to understand
the performance gap between STL and MTL, we trained all
MTL models by weighing each task equally, assigning same
γ for all the tasks. As shown in Table II, the sub-optimal
performance of MTL models, derived from untuned hyper-
parameters, still exceeds conventional STL models. Another
interesting observation is that the performance of the hierarchi-



Fig. 4: Comparison of the overall test loss in Model-F after
30 epochs of training. This is the sum of individual cross-
entropy loss over all tasks. The x-axis shows the value
of γ corresponding to sugar level classification and the y-
axis shows the value of γ corresponding to alcoholic drink
recognition with the other γ’s set equal such that

∑8
t γ8 = 1.

cal structures D, E and F are better than the other three naive
models (A, B and C). This indicates that the better modelling
prowess of hierarchical MTL architectures is independent of
parameter tuning.

To further improve the performance of the HMTL models,
we searched for an optimal hyper-parameter setting. Figure 4
shows the overall cross-entropy error of Model-F when varying
the γ with respect to the two primary tasks. Other γ values
are kept equal such that the sum equals 1 for each training
instance. So, for the coordinate (0.1,0.2) in Figure 4, the loss
value shown is for the setting γ3 = 0.2, γ4 = 0.1 and γ1 =
γ2 = γ5 = γ6 = γ7 = γ8= 0.12. We observe from the heatmap
that the overall loss (on the validation set upon convergence of
the model) increases when the γ corresponding to a particular
primary task is either increased to a very high value (max=1)
or decreased to a very low value (min=0). As a γ increases and
approaches 1 for a task, the framework approaches the STL
setting for that task because the contributions of the other tasks
are de-emphasized. As a γ decreases and approaches 0 for a
task, that task is not trained effectively as the corresponding
loss is too low for effective gradient updates. We found that,
for effective training, the γ values of both the primary tasks
should be in the range between 0.15 and 0.25. Since we have a
large number of hyperparameters (total 8), we show variation
with only those corresponding to the primary tasks in the
heatmap in Figure 4.

(a) Sugar Level

(b) Alcohol

Fig. 5: Confusion matrices generated with Model-F for sugar-
level prediction and alcoholic drink recognition with each
region % normalized per prediction.

TABLE II: Comparison of Precision@1 for all MTL models
with γ set equal for all tasks, i.e. γt = 0.125 for each task t

Sugar
Level Alcohol Drink

Name
Drink
Type Logo Trans-

parency Shape Material

P@1 P@1 P@1 P@1 P@1 P@1 P@1 P@1

A 0.77 0.76 0.34 0.43 0.66 0.37 0.37 0.36
B 0.79 0.78 0.38 0.44 0.65 0.37 0.46 0.38
C 0.81 0.81 0.37 0.46 0.64 0.38 0.46 0.39
D 0.84 0.84 0.36 0.47 0.68 0.39 0.47 0.45
E 0.86 0.86 0.37 0.45 0.73 0.35 0.45 0.52
F 0.88 0.87 0.42 0.48 0.69 0.44 0.45 0.45

D. Confusion Matrices for the Primary Tasks

To understand how our model successfully classifies drink
healthiness and makes errors, we created the confusion ma-
trices as shown in Figure 5b. These confusion matrices of
our Model-F for sugar-level classification and alcoholic drink



recognition tasks for all drinks. While overall results are
reasonable accurate, our model tends to overestimate the low
sugar level as high by 6.51%. This has the consequence of
accusing consumers of drinking highly sweetened beverages
even though they are drinking low sugar drinks.

VI. CONCLUSION

Recognizing the importance of moderating unhealthy drink
consumption, we have developed a healthy drink classifier ex-
ploiting hierarchical multi-task learning framework. To address
the challenges of recognizing drinks, we trained our classifier
with two primary tasks, namely sugar level classification
and alcoholic drink recognition, and six auxiliary tasks. We
also presented the Drink101 dataset which is a drink image
dataset curated for healthy drink classification labeled with
multiple drink attributes. We investigated different multi-task
residual network architectures to exploit the knowledge-base
of hierarchical relationships among different tasks. Our work
can be used to help make healthier drink choices. However,
when someone’s belief in a drink’s healthiness is challenged by
our model, e.g., we say orange juice is high in sugar while the
user believes it is healthy, there must be an effective strategy
of explanations to persuade and nudge the user. In fact, as
a future work, we are planning to expand our framework by
addressing the nuances of explainability which can be made
feasible by exploiting the multiple attributes used in our model.
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