
© 2019 IEEE. This is the author’s version of the article that has been published in IEEE Transactions on Visualization and
Computer Graphics. The final version of this record is available at: 10.1109/TVCG.2019.2934657

OD Morphing: Balancing Simplicity with Faithfulness
for OD Bundling

Yan Lyu, Xu Liu, Hanyi Chen, Arpan Mangal, Kai Liu, Member, IEEE, Chao Chen, and Brian Lim

Trajectory HeatmapIntermediate OD bundlingOD bundling

Fig. 1: Morphing transitions from OD bundling (left) to trajectory heatmap (right) improves faithfulness to actual movement paths.

Abstract—OD bundling is a promising method to identify key origin-destination (OD) patterns, but the bundling can mislead the
interpretation of actual trajectories traveled. We present OD Morphing, an interactive OD bundling technique that improves geographical
faithfulness to actual trajectories while preserving visual simplicity for OD patterns. OD Morphing iteratively identifies critical waypoints
from the actual trajectory network with a min-cut algorithm and transitions OD bundles to pass through the identified waypoints with
a smooth morphing method. Furthermore, we extend OD Morphing to support bundling at interaction speeds to enable users to
interactively transition between degrees of faithfulness to aid sensemaking. We introduce metrics for faithfulness and simplicity to
evaluate their trade-off achieved by OD morphed bundling. We demonstrate OD Morphing on real-world city-scale taxi trajectory and
USA domestic planned flight datasets.

Index Terms—OD Visualization, Edge Bundling, Trajectory

1 INTRODUCTION

The widely used location acquisition technologies, such as GPS on
vehicles and in mobile phones, have accumulated huge volumes of
geographical mobility data. Visualizing origin-destination (OD) pat-
terns of these data facilitate understanding in a variety of application
domains, such as urban planning, transportation and social behavior
analysis. However, OD visualization is challenging due to the edge-
crossing clutter arising from the large number of OD connections and
the requirement of maintaining geographical faithfulness.

• Yan Lyu and Brian Lim are with the National University of Singapore.
E-mail: dcslyuy@nus.edu.sg; brianlim@comp.nus.edu.sg.

• Xu Liu is with the Southeast University, China. E-mail:
liuxu726@gmail.com.

• Hanyi Chen is with the Zhejiang University, China. E-mail:
chanhanyi0923@gmail.com.

• Arpan Mangal is with the Indian Institute of Technology, Delhi. E-mail:
mangalarpan@gmail.com

• Kai Liu and Chao Chen are with the Chongqing University, China. E-mail:
liukai0807@gmail.com; cschaochen@cqu.edu.cn.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

OD bundling1 is a popular method to summarize individual OD
connections and show high-level connectivity patterns while maintain-
ing geographical faithfulness of origins and destinations [22, 30]. OD
connections (also called edges) that are similar with each other in terms
of the location of origins and destinations and direction of travel are
drawn as tightly bundled curves, providing a simplified connectivity
overview. However, researchers argue that bundling techniques may be
misleading because the bundled curves suggest unrealistic movement
trajectories [58, 59].

For example, consider a visualization of trips from taxi data in a
city in China. Fig. 2(a) shows an OD bundling visualization of the
taxi trips. The emphasized blue curves suggest the trips between the
north and south-east mostly travel along the curves, but their actual
trajectories consist of two main paths (Fig. 2(b)): one closer to the city
center towards the west and another detouring towards the east. The
yellow paths deviate far from the bundled curves and clearly illustrate
how OD bundling can be misleading. Although the OD end-points
are geographically faithful, the bundled edges are not faithful to the
true trajectories. This impedes the understanding of movement data,
especially in the domains of transportation and urban planning, where
researchers are concerned with not only the OD patterns, but also
the movement paths between ODs [55]. Although there are some
techniques focusing on path visualization, such as aggregating paths [7,

1also called edge bundling where each OD connection is considered as an
edge in a graph.

1

https://doi.org/10.1109/TVCG.2019.2934657

(a) OD bundling (b) Actual paths

Fig. 2: OD bundling on an sample of taxi trips and their actual paths.

8,26] and constraining path bundles to follow a reference network [43],
these techniques fail to provide a simplified overview for OD patterns.

To address the above issue, we propose OD Morphing, an interactive
morphing visualization technique to make OD bundling less misleading
(more geographical faithful) with actual paths while preserving visual
simplicity for OD patterns. We utilize actual paths traveled between OD
as the maximum geographical faithfulness. The paths can be obtained
by map-matching real trajectories to a network (e.g., road network) and
hence consist of sequences of waypoints (e.g., road junctions). To help
see the representative and distinct paths of OD bundles, we discover
critical waypoints that are visited by many paths. We also define inter-
mediate OD bundles that pass through the critical waypoints, to enable
users to distinguish different paths for bundled ODs, and allow us to
split bundles into different parts. To help see more detailed subpaths
of the OD bundles, we iteratively discover critical waypoints from sub-
paths and split intermediate OD bundles. This increases the degree of
geographical faithfulness along a spectrum. Note also that topological
faithfulness is increased, as the intermediate OD bundling network
includes actual waypoints that flows transit through. To provide a
smooth transition between different degrees of faithfulness, we devel-
oped a morphing technique that iteratively aligns each bundled OD
curve to its waypoint. Furthermore, we proposed a heuristic grid-based
min-cut algorithm to identify critical waypoints at interaction speeds.
Users can interactively transition between degrees of faithfulness to aid
sense-making and balance simplicity of OD patterns with faithfulness
to actual paths. In summary, our contributions are:
• A visualization technique, OD Morphing, that enhances OD bundling

to be more geographically faithful with actual paths, and provides
user interaction for balancing simplicity for OD patterns with faith-
fulness for real paths.

• A hierarchical waypoint finding method to identify critical transit
points from real paths, with a heuristic algorithm to improve compu-
tational efficiency.

• A smooth morphing algorithm to transition bundles to pass through
waypoints to help users visually track the relationship between the
more simple and more faithful intermediate states.

• Evaluation on two real-world datasets show that OD Morphing gen-
erates more faithful visualization with higher OD simplicity than
pure trajectory bundling.

2 RELATED WORK

There are numerous methods to visualize OD connections (e.g., [17,50,
54], but we focus on discussing geographically aligned OD bundling
methods and how to make them more geographically faithful. We also
discuss how trajectory visualizations fail to identify OD patterns.

2.1 OD Bundling
Edge bundling has been proved to be effective in summarizing connec-
tivity patterns and reducing visual clutter for large graphs. It is also
known as “OD bundling” when applied to origin-to-destination flow
data by taking each OD connection as an edge of a graph. It aggregates
the connections that are geometrically close and directionally similar
into bundles, providing a simplified overview for OD patterns.

Bundling methods include geometry-based methods that use a con-
trol mesh [12, 28, 34], hierarchical edge bundling [21], force directed
edge bundling that models with the physics of springs and electrostatic
forces [22, 35, 36, 40], and image-based methods [14, 25, 37]. While

bundling is computationally expensive, recently, GPU computing has
been leveraged in CUBu [44] and FFTEB [29] to process millions
of edges in milliseconds. However, despite the popularity of these
techniques, edge bundling can lead to biased and misleading results,
because the curved edges could deviate far from their actual paths.

Misleadingness of bundling techniques. There are two ways that
OD bundling can be misleading. First, the bundles mislead the per-
ception of connections between unconnected locations as it is hard to
distinguish individual connections from tightly bundled curves. This
problem has been known as “edge ambiguity” [9, 34]. Second, the
bundled curves are also misleading by suggesting unfaithful movement
trajectories [58, 59], whereas moving objects have their own actual
paths that may deviate far from the bundles.

Many solutions have been proposed to address the edge ambiguity,
such as confluent drawing that only bundles topologically connected
edges [9], and edge routing techniques to avoid edge-to-node overlap-
ping [34, 39]. Wang et al. quantified the ambiguity in edge bundling
based on the consistency of the bundled edges (i.e., distance, edge
length similarity and parallelism) and the clarity of each bundle (i.e.,
edge curvature and intersection) [47]. Interaction is another way for
users to untangle edge ambiguity, such as relaxing local bundling
strength [21, 27], dispersing some edges away from a region to reveal
underlying nodes [48, 49], and applying digging lens to separate over-
lapped edges [42].These methods disambiguate bundled edges from
unrelated nodes, but may still mislead users to think that the edges are
the movement paths tracking through certain detours or directions.

Other than disambiguating edges, we focus on tackling the mislead-
ing, unfaithful, curved paths of OD bundling visualizations. There
have been a few proposed solutions. Thöny and Pajarola constrained
the bundles to follow some reference network such as a road net-
work [43]. Those bundles, however, follow the shortest paths rather
than the actual paths of movements. It is noteworthy that some bundling
methods have been applied to trajectories directly, instead of OD con-
nections [24–26, 29, 44]. This simplifies trajectory visualization by
aggregating similar trails. With proper tuning (e.g., setting small kernel
size in KDEEB [25]), the bundled paths can lean towards the actual
paths taken and become less misleading to some extend, but they still
deviate from the actual path and are hence unfaithful. Zeng et al. further
improved KDEEB by adding spatial constraints of roads so that the
bundled trajectories can adhere to the major road network in a certain
degree [56]. However, the OD connectivity patterns become ambigu-
ous because the bundled trajectories may detour much more than the
OD bundles and they may overlap with each other even though their
origins or destinations are far from each other. To help users analyze
OD patterns associated with path information, Zeng et al. introduced
waypoints from paths into OD flow visualization [55]. Users can in-
teractively select entry and exit waypoints in a transportation network.
The system filters trajectories passing through the selected waypoints
and presents the waypoints-constrained OD view. This method requires
users to have domain knowledge to find good waypoints and only two
waypoints can be specified. In contrast, in our proposed technique,
the critical waypoints are generated in a data-driven manner, indicat-
ing the key transit points with high visiting frequency or significant
direction changes. Moreover, the waypoints are iteratively selected and
visualized to provide interactive degrees of faithfulness for real paths.

2.2 Trajectory Visualization
Different from OD bundling, trajectory visualization techniques can be
much more faithful to actual movement paths. Existing techniques usu-
ally focus on the route or path information to display detailed motion
structure [7, 8], such as traffic on roads [41]. To visualize trajectory big
data, techniques such as aggregation, abstraction, and summarization
have been proposed. Trajectories can be aggregated by extracting key
characteristics, such as the sequential relation of between intermediate
locations [7, 8] and geometry features, density and attributes [46]. For
example, Andrienko et al. [8] divided trajectories into segments by
extracting characteristic points and transformed them into aggregated
flows between areas. Huang et al. [23] abstracted taxi trajectories into
a traffic graph where a vertex represents a street or a region and an

2

© 2019 IEEE. This is the author’s version of the article that has been published in IEEE Transactions on Visualization and
Computer Graphics. The final version of this record is available at: 10.1109/TVCG.2019.2934657

(a) OD bundle (b) Waypoints and Paths (c) Intermediate OD bundle

Fig. 3: Examples of concepts.

edge indicates taxi traffic between streets or regions. Al-Dohuki [4]
summarized trajectories by transforming them into text with reverse
geo-coded POI name and speed meta data. By leveraging the rich de-
tails of trajectories, some visualization techniques focus on annotating
with auxiliary details. For example, Tripvista [18] analyzes micro-
scopic traffic patterns and abnormal behaviors on road intersections;
Sun et al. [41] proposed a route-zooming framework by embedding
spatio-temporal information into a map. However, all of these stud-
ies are concerned with the intermediate locations between origins and
destinations. The OD connections are hard to perceive due to the data
abstraction, aggregation, or the high level of detail, whereas, our work
combines the intermediate locations and their ODs together.

3 DEFINITIONS AND REQUIREMENTS

In this section, we clarify key terms and discuss design requirements.

3.1 Definitions
OD Morphing uses the actual paths or real trajectories of movements
to improve the geographical faithfulness of OD bundles. Hence, we are
interested in both the OD connections and the path of movements.

An OD connection is a direct trip from an origin (O) node to a des-
tination (D) node. It is usually drawn as a curve in bundling techniques.
Fig. 3(a) shows a bundle of four OD connections.

A Path from O to D is a sequence of intermediate nodes from one
node to another with links on a network (e.g., roads). A trajectory can
be simplified into a path with map-matching techniques [32].

A Waypoint for a path is a node on the network that the path passes
through. We measure the importance of a waypoint n based on three
factors: 1) Number of visits, vn, i.e., the number of paths passing
through n; 2) Degree centrality, dn, i.e., the number of other waypoints
adjacent to n; 3) Average turning angle, an, of the paths passing through
node n. Intuitively, the failure of a frequently visited node, (i.e., dis-
connected from the network) is likely to effect many paths; and the
failure of a higher degree node would also impact a larger number of
neighboring nodes [31, 51]. In transportation research, the number of
visits has been used to approximate the capacity of a node [23]. Both
the capacity and centrality have been verified as key indicators of node
importance [31, 53] on a traffic network. The average turning angle
at a junction node is a key measurement in traffic management which
approximates the direction change of traffic flow [33, 52]. The larger
turning angle, it is more likely to have a longer detour at the node. We
also verify the importance of these criteria in our expert interviews,
described later. Therefore, the importance, denoted by In, is measured
by the weighted sum of those factor values, i.e.,

In = w1
vn

maxvn
+w2

dn
maxdn

+w3
an

maxan
, (1)

Given a set of paths, we seek to identify a set of critical waypoints

that minimizes the number of waypoints while maximizing their overall
importance, under the constraint that each path visits at least one of the
critical waypoints. Such a set of critical waypoints indicates key transit
locations of movements. Fig. 3(b) illustrates two critical waypoints
shared by actual paths of the four OD connections in Fig. 3(a). The
details of identifying critical waypoints are in Section 4.2.

Intermediate OD bundle. An intermediate OD bundle is a result
state of transforming an OD bundle to pass through critical waypoints
discovered from their actual paths. This is used to distinguish repre-
sentative paths of OD bundles. Fig. 3(c) shows an intermediate bundle
transformed from the OD bundle in Fig. 3(a) to pass through the two
critical waypoints, from which we can know two of the four trips share
one common waypoint and the other two share another one, indicating
there could be two common paths.

3.2 Requirements
From the previous section, we can see that while OD bundling seeks to
simplify OD connections, it suffers from having misleading path rep-
resentations. In contrast, trajectory visualizations faithfully represent
actual paths, but fail to identify OD patterns. We seek to produce OD
bundling visualizations that satisfy the following requirements:

1. Simplicity. The visualization should maintain the property of OD
bundling visualizations that emphasize key patterns of OD flows by
creating bundled curves that are easy to visually follow end to end.

2. Faithfulness. The visualization should accurately represent actual
paths and waypoints so that viewers are not misled to perceiving
non-existent paths.

3. Balanced intermediate representation. Simplicity and faithfulness
are conflicting requirements; hence, the visualization should be able
to be tuned towards a balance between both key criteria.

4. Interactive and smooth morphing. The difference in more simple or
more faithful representations can lead to different degrees of interpre-
tation.The visualization should be interactive with smooth transitions
(also known as morphing) between different intermediate representa-
tions to support “details on demand” for user interaction [20].

4 OD MORPHING

Satisfying the aforementioned requirements, we present OD Morphing
that unifies the representation of OD bundling with varying degrees
of simplicity and faithfulness, and smooth morphing between OD
bundling of different degrees. Fig. 4 illustrates the iterative process of
morphing the OD Morphing visualization from simple OD bundling to
faithful paths. OD Morphing consists of a main pipeline (Fig. 4 middle
row) where a simple OD bundling is iteratively morphed towards the
faithful paths. The bundling is performed using KDEEB (Section
4.1), though other bundling methods [22] could also be used. We
iteratively identify critical waypoints from the path network (Fig. 4 top
row; Section 4.2) to represent path information at different degrees of
faithfulness. In each iteration of morphing, the critical waypoints are
added to previous OD bundles to produce more faithful OD bundles.
Since the addition of waypoints to the OD bundling can be abrupt, we
present smooth morphing (Fig. 4 bottom row; Section 4.3) to help users
to track the transitions. We summarize the whole iterative process in
Section 4.4. Finally, to allow interactive morphing between degrees,
we extend OD Morphing to an approximate but faster variant with a
grid-based min-cut algorithm, which will be introduced in Section 4.5.

4.1 OD bundling
We chose the bundling technique Kernel Density Estimation for Edge
Bundling (KDEEB) [25], since it is more computationally efficient
than other methods (e.g. [22]), is easy to implement and flexible to be
extended for real-time calculations [24, 29, 44]. We briefly describe the
standard method here.

In KDEEB, all the straight edges of the input graph are discretized
into a set of points by a small sampling step. KDEEB first calculates
the density at each edge point using kernel density estimation (KDE).
Given a graph consisting of a set of edges E = {ei}, KDEEB calculates
the local density at an edge point x, denoted by r(x), as

r(x) = Âei2E

Z

y2ei

K(
x� y

h
), (2)

where K is a Gaussian or quadratic kernel function with bandwidth
parameter h. To compute r(x), KDEEB adopts an image processing
function, i.e., blending the edge point data on an 2D texture and reading
r(x) from the floating-point texture buffer. KDEEB then iteratively
sharpens the density by advecting the edge points upwards in the density
gradient, i.e., at step t +1, the location of x(t +1) is

x(t +1) = x(t)+S(t)
—r(x, t)

||—r(x, t)||+ e
. (3)

where e is a small constant to prevent division by zero. —r(x, t) is
the density gradient at x estimated at step t. The step size S(t) usually
decreases over step t. By iteratively computing the density map r and
shifting the edge points along the density gradient, the input graph
becomes more tightly bundled.

3

https://doi.org/10.1109/TVCG.2019.2934657

Iterative
Waypoint finding

...
OD Bundle

Splitting

OD
Bundling

Smooth Morphing

OD Paths

OD
Connections

OD
Bundles

Fig. 4: OD Morphing Pipeline.

4.2 Waypoint Finding
As discussed in Section 3.1, we have defined the importance of a
waypoint by the number of path visits, degree centrality and average
path turning angles at this waypoint (Eq. 1). To identify a set of critical
waypoints to represent the path flows, we first discuss criteria that they
should satisfy and then propose a solution to find the set.

Each of the critical waypoints should have high importance, in other
words, one objective is to maximize their total importance. Moreover,
the number of the critical waypoints should be minimized in order to
create a simple representation and clear visualization, but they should
be also inclusive: each path should pass through at least one of the
critical waypoints. Identifying such a set of critical waypoints as a
simplified representation for path flows satisfies Requirement 3 to
balance between visual simplicity and path faithfulness. We unify these
criteria and define the following objective:

minimize |Wc|�Ân2Wc
In (4)

subject to Pi\Wc 6= /0,1 i |{Pi}| (5)
Wc ✓W (6)

where Wc is a subset of critical waypoints from the set of all the way-
points W , and |Wc| denotes the set size. In is the importance of a
waypoint n, and can be calculated by Eq. 1, In 2 [0,1]. {Pi} is the set of
paths. Eq. 5 constrains that each path Pi should visit at least one of the
critical waypoints. Eq. 4 minimizes the set size of Wc and maximizes
the sum of waypoint importance in Wc. It can also be written as

minimize Ân2Wc
(1� In). (7)

The problem depicted by Eqs. 5, 6 and 7 is actually a variant of min
cut problem on a network flow. The min node cut problem aims to find
a set of nodes with the minimum total weights (Eq. 7) that can break
the flows from a source to a sink. That is, every path between them
passes through some member of the cut (Eq. 5).

In order to leverage efficient and well-developed min-cut algorithms
to find the set of critical waypoints, we made the following adaptations.
First, we formulate a flow network G using the set of paths {Pi}, i.e.,
each waypoint on a path is a node of G and there is a direct edge
between two nodes if there is a path passing through the two nodes
successively. Each node has a weight of 1� In. Second, a dummy
source and a dummy sink are introduced for all the origins and all the
destinations, respectively. All the path flows start from the dummy
source, visit their own origins immediately and travel along their own
paths until their own destinations, and finally converge into the dummy
sink. The minimum node cut that breaks the dummy source to the
dummy sink is the set of critical waypoints. However, the existing
classic min-cut algorithms [13] were designed for the minimum cut
through edges. To find the min node cut, we convert the flow network
G to the edge-to-node dual network form by converting each edge of
G to a node and connecting two nodes with an edge if and only if
the corresponding edges in G have a node in common. We apply the
Boykov-Kolmogorov algorithm [10] to the dual network to find the

minimum edge cut, which is actually the minimum node cut of G. Note
that there could be the case that a node is an origin for some paths but
also a destination for other paths. This node will be one of the critical
waypoints but is unwanted because it is selected for cutting the dummy
source to dummy sink rather than high importance. To avoid this case,
we split this node into two nodes, one is an origin of some paths, and
the other is a destination of other paths. The two nodes have the same
geographical locations but there is no flow between them.

Waypoint hierarchy. The set of critical waypoints discovered from
all paths could be too coarse for full path representation, because each
path is represented by only one waypoint. To create more faithful path
representations, we iteratively divide each path into subpaths at the
critical waypoints and further search for a set of critical waypoints
from subpaths, as depicted in the top row of Fig. 4. Specifically, for
each path, we divide it into two subpaths at its critical waypoint. The
waypoint becomes a destination for one subpath and an origin for
another. We then recursively apply the waypoint-finding method for
the newly generated subpaths to iteratively obtain the next set of finer-
granularity critical waypoints. After some iterations, some subpaths
will consist of endpoints only, i.e., no intermediate waypoints, and
will be removed from further waypoint finding steps. The iteration
terminates when no subpaths that contain intermediate vertices are
found. The iterative discovery of critical waypoints builds a waypoint
hierarchy. Each level in the hierarchy adds a set of critical waypoints
to the previous OD bundling frame (one square in middle pipeline of
Fig. 4). We denote each frame with index l.

4.3 Smooth Morphing
By incrementally adding critical waypoints to OD bundles, and per-
forming further bundling, we incrementally create OD bundles that are
more faithful. To aid visual tracking between degrees of faithfulness,
OD Morphing applies smooth morphing to transition between OD bun-
dle frames (e.g., see each frame in the middle pipeline in Fig. 4). The
smooth morphing technique transitions the previous OD bundles to the
next intermediate OD bundles by moving the points on the bundled
curves toward the critical waypoint in small interpolation steps (see Fig.
4 bottom row). This animated transition helps keep viewers oriented
to the changing positions of specific paths as they move from the OD
bundled form to trajectories [19]. While it can still be difficult to track
the full network as a whole, viewers can focus on one bundle or a few.

One challenge is to morph OD bundles from the previous frame l�1
to the next frame l. However, with KDEEB, the bundles are already
stable with respect to the previous kernel density. We aim to move the
curves towards the new critical waypoints by defining attractors towards
these waypoints. Therefore, points of the bundled curves will be shifted
in two directions: one towards the kernel density as the curves move,
and another towards the new waypoints.

Consider Fig. 5 as an example to illustrate the details. Focusing on
the thick curve e with endpoints o and d, xi and x j are the two arbitrary
points on this curve, and w is the waypoint. c is the closest point on
the curve to the waypoint, i.e., c = argminxi2e || # »xiw||. The waypoint
attraction to c, denoted by F(c), is directly towards the waypoint, i.e.,

4

© 2019 IEEE. This is the author’s version of the article that has been published in IEEE Transactions on Visualization and
Computer Graphics. The final version of this record is available at: 10.1109/TVCG.2019.2934657

Origin ! Destination "

Waypoint w

$%& %'∇)(%+)
∇)(%-)

.(%-).($).(%+)

Fig. 5: An example of movement directions of points on a bundled
curve. The point c is the closest point to the waypoint w and it will
move toward directly to w. The rest of points on the curve, such as
xi and x j, will move along a combined direction: one towards their
projections on # »ow and

»
wd and the other is local kernel density gradient.

»cw. For each point like xi and x j, the waypoint attraction, denoted
by F(xi) and F(x j), is towards the projections of on the edge between
the waypoint and the endpoint, namely, F(xi) ? # »ow and F(x j) ?

»
wd.

Moving towards the projections on the straight (dotted) edge between
the waypoint and the endpoints (o and d) helps the curve align to its
straight subpath.

We combine the waypoint attraction F(x) with the kernel density
gradient —r(x, t) to advect a point x(t) to a new location x(t +1), i.e.,

x(t +1) = x(t)+Sx(t)(r
—r(x, t)

||—r(x, t)||+ e
+(1� r)

F(x)
||F(x)||+ e

), (8)

where r is for weighting the two directions, Sx(t) is the step size, and
e is a small constant to prevent division by zero. As can be seen in
Eq. 8, the bundles in each frame l in OD Morphing depends on the
bundles drawn from the previous frame l�1. Thus, OD Morphing is
not memory-less and bundles cannot be computed from an intermediate
frame without knowing the previous less faithful frame.

The weight r is set under the intuition that the closer the point is to
the waypoint, the more influential is the pull towards the waypoint, i.e.,
F(x); conversely, the closer the point is to the existing endpoint, the
more influential is the pull towards the kernel density gradient, i.e.,

r =
|| # »wx||

|| # »wx||+ || #»xp|| , (9)

where || # »wx|| is the distance from x to waypoint w. || #»xp|| =
min(|| #»xo||, || #»

xd||) is the distance from x to one of the endpoints (origin
o or destination d, which ever is closer) p of the curve.

It is worth noting that the closest point c should not be affected by
the kernel density gradient in order to guarantee that c will be at the
location of w after a fixed number of steps. So we force c to move in a
straight line towards w. The step size of c at step t, denoted by Sc(t), is

Sc(t) =
tanh(T � t)

ÂT
t=1 tanh(T � t)

|| # »cw||, (10)

where T is the total number of steps for the full smooth movement.
The expression tanh moves c in a non-linear rate between each frame,
such that the movement is at a relatively high speed in the beginning
and middle, and slows down at the end. This visually emphasizes clear
movement as the bundles deviate from the previous OD and converge
to the new waypoints. The step size of other points such as xi and x j , is
set to be proportional to Sc(t), i.e.,

Sx(t) = Sc(t)
||

»

xx0||
|| # »cw|| , (11)

where x0 is the projection of x on # »ow or
»
wd. During each step, we

implement Laplacian smoothing [15, 25] for each curve to remove
small-scale zigzag curving. The smoothing avoids tuning the location
of the closest point c to make sure it arrives its waypoint after T steps.

The bottom row of Fig. 4 illustrates four intermediate steps of the
smooth morphing from the OD bundle to the intermediate OD bundles.
Two of the four trips gradually shift to pass through one waypoint
(in the green circle) and the other two trips move towards the other
waypoint. The bundled shape is maintained in each step. From the
transitions, users can distinguish that trips from the same O to the same
D take two different paths via two critical waypoints. We also provide
users interaction to control the transition. Users can freely go from
bundled overview to split bundles for checking paths and vice versa.

The above computations have to be processed efficiently in order
to produce a smooth transition. For each step t, the kernel density
r(x, t) is computed at a nearly real-time speed by leveraging openGL
and GPU, as demonstrated by the real-time KDEEB implementation
on dynamic graphs [24]. The movement of each point and Laplacian
smoothing are also computed in parallel.

4.4 Iteration process for degrees of faithfulness
OD Morphing is an iterative process with multiple parallel processes.
We summarize them here. Given a set of bundled OD curves {B} and a
set of paths {P} taken between those ODs, the recursive scheme has
the following steps:

(1) Formulate a flow network with {P}, identify a set of critical way-
points {w} using min-cut algorithms, as described in Section 4.2.

(2) Morph {B} to pass through the waypoints {w} and formulate inter-
mediate OD bundles {BI}, as described in Section 4.3.

(3) Divide each path in {P} into subpaths by its critical waypoint. The
waypoint becomes a destination for one subpath and an origin for
another. The set of all subpaths is denoted by {Psub}.

(4) Divide each bundled curve in {BI} at the location of its critical
waypoint. The set of all sub bundles is denoted by {Bsub}.

(5) Update paths {P} with their subpaths and bundles {B} with sub-
bundles, i.e., {P} {Psub} and {B} {Bsub}.

(6) Remove subpaths that only consist of endpoints from {P}.
(7) Repeat the above steps until {P} is empty.

Each iteration represents a frame in the OD Morphing pipeline. After
some iterations, some subpaths will consist of endpoints only, i.e.,
no intermediate node on each subpath. In this case, no waypoints
can be found on these subpaths and they will be removed from {P}.
Meanwhile, their corresponding sub-bundles will be transitioned to
the subpaths directly, i.e., the curve of each sub-bundle will be shifted
directly toward to the subpath by making a dummy waypoint at the mid
point of the subpath and following the same movement function (Eq. 8)
where r = 0. After T steps, this curve overlaps with its subpath and
will be removed from {B}. For the curves overlapped with subpaths,
we cumulatively render them to a traffic heatmap where a red color
gradient is applied to indicate the traffic volume, i.e., the number of
subpaths. After all the subpaths are rendered, we obtain a trajectory
heatmap, which has the maximum geographical faithfulness.

We provide user interaction to tune the degree of faithfulness, i.e.,
the number of iterations. The user can increase the degree from zero to
the maximum. They can also reverse and decrease the degree to check
OD connectivity, this can be achieved by caching the intermediate
results in each iteration and rendering them backwards. By examining
each visualized frame forward and backward, users can find a personal
trade-off between simplification for OD patterns and geographical
faithfulness for actual paths.

4.5 Interactive-Speed Grid-Based Waypoint Finding
In order to provide efficient interactions, the iterations in OD Mor-
phing should be computed quickly (e.g., within 1 second). However,
searching for min-cuts on a large graph has high time complexity, i.e.,
O(|V ||E|2), where |V | and |E| are numbers of vertices and edges, re-
spectively. Here we propose a heuristic algorithm in order to support
computation at interactive speed.

Traditionally, min-cut algorithms are used for flow analysis. How-
ever, min-cut algorithms have also been adapted and extensively used
in computer vision for pixel labeling problems such as image restora-
tion and segmentation [10]. These image-specific algorithms usually
parallelize min-cut search and have higher efficiency than traditional
ones that are unparallelizable. This is feasible because the pixel graph
is regular, i.e., each pixel node has four neighbors at four directions
(up, down, left, right). Algorithms such as Push and Relabel [45] can
be parallelized in one direction at a time.

Inspired by this, but applying to graph networks instead of image
pixels, we transform the path flows over a network into a grid graph
and parallelize the Push and Relabel algorithm to search the minimum
grid cut. As demonstrated in Fig. 6 (a), we divide the 2D spatial space

5

https://doi.org/10.1109/TVCG.2019.2934657

S T

Dummy super source
Dummy super sink

S
T

S

T

Origin / Destination
Critical waypoint

(a) Mapping path network into grids (b) Parallel search on grid graph

Path
Min cut by grid edge

Fig. 6: An example of heuristic waypoint finding. (a) maps the path
network into a graph and (b) shows four search directions of parallel
Push and Relabel algorithm on the grid graph.

into equal-size squared grids. These grids formulate a regular graph
in which each grid is a node and there is an edge between every two
neighboring grids, as shown in Fig. 6 (b). Given a set of paths {P}, we
map each path into the grids by their geo-locations with Bresenham’s
line algorithm [11]. The importance of an edge from grid i to neighbor
grid j, denoted by Ii j, is set based on the number of the paths passing
through the edge, i.e., Ii j = vi j/max{vi j}, where vi j is the number of
the paths successively pass though grid i to j. Similar to our min-cut
formulation in Section 4.2, we set the weight of each edge as 1� Ii j . We
introduce a dummy super source node connecting to all the origin grids
and a dummy super sink node connecting to all the destination grids.
By applying parallel Push and Relabel algorithm on this grid graph, we
can obtain a set of grid edges as the minimum cut (drawn as the green
short lines in Fig. 6). For each path passing through a grid edge cut, we
select the nearest node to the edge as the critical waypoint. Note that,
while all waypoints found eventually are still the actual waypoints, they
are not found in the same order as in Section 4.2. Grid-based waypoint
finding may find less important waypoints first (as according to Eq. 1)
and there may be more waypoints found for earlier frames. We define
this discrepancy between the optimal approach (Section 4.2) and this
grid-based approach as the optimal gap. However, these grid edges
still indicate popular spatial regions visited by the paths, the distances
between approximate waypoints and the optimal waypoints are not
large. Moreover, this optimal gap will be compensated by efficiency
improvements. We describe the details in Section 7.

5 EVALUATION

We evaluate OD Morphing to demonstrate how it increases the faith-
fulness of OD bundling visualizations by showing examples from two
real-world datasets and quantitatively by defining metrics for faithful-
ness and simplicity. We compare OD Morphing with a baseline and
discuss trade-offs in using either method.

5.1 Metric
OD Morphing can generate visualizations that balance between the
conflicting objectives of faithfulness and OD bundling simplicity. We
formally define metrics for these objectives to allow for a quantitative
comparison of OD Morphing with other OD bundling techniques.

5.1.1 Faithfulness
There are multiple ways to define path faithfulness and we consider
three interpretations. First, faithfulness can be considered as a measure
of how much of the OD bundling visualization shows actual paths and
waypoints of the underlying path data. This is important since when
viewers study the visualization, they will draw conclusions based on
geographically associating the bundles with the base map. We call
this first definition overlap, and denote a score foverlap. If a bundled
curve completely overlaps with its actual path, it has the maximum
overlap (foverlap = 1). If there are no actual waypoints shown in the
visualization, it has no faithfulness (foverlap = 0). Given a bundled
curve e and its actual path P, and denoting their segment(s) of overlap
as el , the proportion of overlap is defined by the ratio of length of the
overlap to the total length of the path, i.e., foverlap = Len(el)/Len(P).

Another interpretation of faithfulness considers how little the bun-
dles deviate from actual paths. We call this closeness and denote a
score fcloseness. Note that closeness may still be misleading since no

part of the visualized bundles may actually coincide with the actual
paths on the map. Indeed, closeness faithfulness is well represented
with trajectory bundling, which we use as a comparison baseline (Sec-
tion 5.1.3). Similarly, if a bundled curve completely coincides with its
actual path, it has maximum closeness (fcloseness = 1). Closeness is
asymptotic and minimum closeness is unobtainable, but as a bundled
curve deviates more from its actual path, closeness approaches the
minimum (fcloseness! 0). Given a bundled curve e and its actual path
P, we define deviation of the curve e as the average distance from each
sampling point on the curve e, denoted by x, to its corresponding closest
point on the path, denoted by c, is Dev(e) = 1

|e| Âx2e || #»xc||. Closeness
is the inverse of this distance and bounded in [0,1], so we define it as
fcloseness = exp(�lDev(e)), where l is a tuning parameter and will
be tuned for different datasets with various spatial scales.

Faithfulness can also be considered as how closely the bundles
adhere to the general curves and shapes of the original trajectories.
Although this is not important for our main analysis tasks of identifying
detour paths and ODs, it is useful for summarize traffic structure. We
define this as shape faithfulness and denote a score fshape and compute
it based on a shape similarity. The shape similarity between two curves
can be measured with the Fréchet distance [5], denoted by d f rechet ,
that considers the location and ordering of the points along the curves.
For a curve e and its actual path P, the shape similarity is obtained by
calculating the Fréchet distance d f rechet(e,P). We define and mapping
it into [0,1] where 1 is the maximum shape faithfulness, i.e., fshape(e)=
exp(�gd f rechet(e,P)), where g is a tuning parameter for various spatial
scales, such that fshape = 1 for identical shapes and fshape! 0 as the
edge diverges in shape from the actual trajectory.

5.1.2 Simplicity
The simplicity of edge bundling can be measured by the amount of
ink used for rendering [16, 38]. The tighter of the edge bundles, the
more ink savings. However, OD simplicity cannot be measured by ink
alone, because OD patterns can also be hard to see when the tightly
bundled edges detour too much. OD patterns would be clearer if the
OD bundles minimize the total curvature as well as the amount of ink
needed for rendering. For example, a curve that only bends clockwise
is simpler than another (with the same O and D) that bends clockwise,
counterclockwise, and clockwise again; a curve that loops back on
itself is also less simple than one without loops. Hence, we define
OD simplicity by two sub metrics: ink savings, denoted by sink and
curvature, denoted by scurvature.

The ink, denoted by I, is measured by rendering the bundles on a
8-bit gray-scale image and counting the pixels of curve drawings under
the threshold of 100. We define the ink needed for rendering unbundled
OD connections (i.e., node-link diagrams with straight edges) as the
maximum ink, denoted by Imax. The ink savings of bundles can be
calculate by sink = 1� I/Imax.

We measure curvature for a curve by summing up the magnitude of
turning angle at each sampling point on the curve. Given a point xk,
the turning angle at xk, denoted by ak, is arccos((xk� xk�1) · (xk+1�
xk)/(||xk � xk�1|| · ||xk+1� xk||). The direction change of a curve e,
denoted by A(e), is the sum of the turning angles of all the sampling
points. The sum of turning angle A(e) = Âxk2e(ak). Note that be-
cause A(e) otherwise could be very large, we normalize it into [0,1] as
sangle(e) = exp(�A(e)).

5.1.3 Baseline
Trajectory bundling (also known as trail bundling) has been regarded
as a simplification for trajectories. The bundled trajectories visually
emphasize dominant or popular trajectories by curving less dominant
trajectories towards them. When applied more strongly to tighten the
bundles, trajectory bundles may appear to look like OD bundling visu-
alization with a strong degree of OD simplicity. With less tightening,
trajectory bundles is more faithful to the original trajectories. There-
fore, it can be used as a baseline for comparison. Specifically, we
apply KDEEB to the trajectory and path data. By iterating the steps
of 1) estimating kernel density, 2) shifting trajectory points towards

6

© 2019 IEEE. This is the author’s version of the article that has been published in IEEE Transactions on Visualization and
Computer Graphics. The final version of this record is available at: 10.1109/TVCG.2019.2934657

!"#$%&'&%% = .68
!$,&-#./ = .38
!%1./& = .15

45'6 = .60
4"8-,.98-& = .88

I(a) I(b) I(c) I(d) I(e)
I. OD Morphing

II(a) II(b) II(c) II(d) II(e)
II. Trajectory Bundling (TB)

!"#$%&'&%% = .51
!$,&-#./ = .13
!%1./& = .12

45'6 = .78
4"8-,.98-& = .94

!"#$%&'&%% = .27
!$,&-#./ = .08
!%1./& = .10

45'6 = 1
4"8-,.98-& = 1

!"#$%&'&%% = .94
!$,&-#./ = .91
!%1./& = .73

45'6 = .10
4"8-,.98-& = .55

!"#$%&'&%% = 1
!$,&-#./ = 1
!%1./& = 1

45'6 = 0
4"8-,.98-& = 0

!"#$%&'&%% = .71
!$,&-#./ = .02
!%1./& = .77

45'6 = .28
4"8-,.98-& = .52

!"#$%&'&%% = .48
!$,&-#./ = .01
!%1./& = .39

45'6 = .61
4"8-,.98-& = .84

!"#$%&'&%% = .38
!$,&-#./ = 0
!%1./& = .30

45'6 = .79
4"8-,.98-& = .96

!"#$%&'&%% = .32
!$,&-#./ = 0
!%1./& = .21

45'6 = 1
4"8-,.98-& = 1

!"#$%&'&%% = 1
!$,&-#./ = 1
!%1./& = 1

45'6 = 0
4"8-,.98-& = 0

w1

w2

w3
w4
w5

w6

Fig. 7: Frames of (I) OD Morphing and (II) TB on taxi data. sink and scurvature are the simplicity scores, and fcloseness, foverlap and fshape are
faithfulness scores. The color of the bundles ranges from blue (more simple) to red (more faithful w.r.t. closeness and overlap). The green dots in
frames (I) are the critical waypoints. The size of a dot is in proportion to its waypoint importance (Eq. 1).

00.20.40.60.81

Ink Saving

0

0.2

0.4

0.6

0.8

1

O
ve

rl
a
p

(a)

00.20.40.60.81

Ink Saving

0

0.2

0.4

0.6

0.8

1

C
lo

se
n
e
ss

(b)

00.20.40.60.81

Ink Saving

0

0.2

0.4

0.6

0.8

1

S
h
a
p
e
 S

im
ila

ri
ty

(c)

00.20.40.60.81

Curvature

0

0.2

0.4

0.6

0.8

1

O
ve

rl
a
p

(d)

00.20.40.60.81

Curvature

0

0.2

0.4

0.6

0.8

1

C
lo

se
n
e
ss

(e)

OD Morphing

Traj. Bundling

00.20.40.60.81

Curvature

0

0.2

0.4

0.6

0.8

1

S
h
a
p
e
 S

im
ila

ri
ty

(f)

Fig. 8: Plots showing how faithfulness (overlap, closeness, and Fréchet
similarity) vary with simplicity (ink saving and curvature), comparing
OD Morphing with TB. Points closer to the top-left corner of the plots
indicate more faithfulness for the same simplicity (a good result).

the direction of density gradient with a small step size and 3) smooth-
ing, we obtain bundles with a certain tightness (i.e., simplicity) after
each iteration, and compare them with corresponding intermediate OD
bundles generated by OD Morphing with the same simplicity.

5.2 Application Datasets
We evaluate OD Morphing on two real-world datasets: taxi trajectory
data and planned flight route data, and calculate the faithfulness and
simplicity for each output frame of OD Morphing, i.e., starting from
pure OD bundle to each intermediate OD bundles until pure trajectories
visualization. We also compare it with Trajectory Bundling (TB).

5.2.1 Taxi trajectory data
The taxi trajectory data set was collected from Chengdu, China from
August 3rd to 30th, 2014. There are 14K taxis with about 1.2 bil-
lion GPS records. We extracted 10 million passenger trajectories by
detecting the pick-up (origin) and drop-off (destination) activities. Af-
ter map-matching each passenger trajectory to the road network of
Chengdu [32], we obtained actual paths for each OD trip and focus on
the long taxi trips during morning peak hours, which formulates a flow
graph with 28,174 nodes and 39,723 edges.

Fig. 7 I(a) shows OD bundles of the taxi trips and their actual paths
are drawn in Fig. 7 I(e). From these two figures, it can be hard to tell
which actual path maps to an OD bundle. OD Morphing addresses this
problem by gradually transforming OD bundles to pass through critical
waypoints on their roads. As the bundles iteratively pass through critical
waypoints, they gradually align to their paths, hence the faithfulness
(i.e., overlap and closeness) increases. The simplicity, in terms of
ink saving and curvature, however, decreases as expected because the
bundles became loose and detour much more when aligning to the
roads. Fig. 7 I(b) shows an intermediate state where the first critical set
of waypoints (green dots) are visible with their OD bundles are passing
through them. We can see the trips between the airport (left bottom)
and city center pass through waypoints w1, w2 and w3, indicating these
are important transit nodes for the airport transportation. From the trips
passing through waypoints w4, w5, w6, we interpret that these trips
detour along the ring road as detour from city center to the east. This
is further clarified by the later morphing steps I(c) to I(d) where those
trips are gradually aligned to the ring roads.

Fig. 7 II shows the intermediate frames of applying KDEEB to
the taxi paths in Fig. 7 II(e). From Figs. 7 II(a) to II(d), we can see
the trajectory bundles are gradually getting close towards paths in
shape. However, maintaining the shape of paths is not overlap faithful
because the bundles shift as a whole from their paths. We can see the
bundles that followed the ring-shaped highway are still tighten to city
center in Figs. 7 II(b) and II(c)). These frames could tell users the
bundles may split to or merge from different directions but they cannot
provide accurate location on the roads where they split or merge. This
explains why TB has lower overlap and closeness faithfulness than OD
Morphing at the roughly the same ink saving and curvature scores.

Figs. 8(a), (b), (d), (e) show how faithfulness varies with simplicity
for different frames generated by OD Morphing and TB, respectively.
We can see that when morphing from OD bundles to trajectories, both
overlap and closeness faithfulness increase as the simplicity decreases
for both methods, but at the same simplicity score (i.e., ink saving or
curvature), OD Morphing is more faithful than TB.

Although our key metrics overlap and closeness indicate that OD
Morphing is more faithful than TB, some viewers may still perceive
TB to be more apparently faithful. This perceived faithfulness is due to
the bundles maintaining the shape of original trajectories. The shape
similarity describes this property and Figs. 8(c) and (f) illustrate how
TB has higher shape faithfulness and OD Morphing. Yet, quantitatively,
TB is also misleading and uninformative regarding our key analysis

7

https://doi.org/10.1109/TVCG.2019.2934657

w1 w2 w3(b) (c) (d)(a)
!"#$%&'&%% = .12
!$,&-#./ = .00
!%1./& = .10

23'4 = 1
2"5-,.65-& = .31

!"#$%&'&%% = .43
!$,&-#./ = .24
!%1./& = .29

23'4 = .28
2"5-,.65-& = .52

!"#$%&'&%% = .74
!$,&-#./ = .46
!%1./& = .63

23'4 = .81
2"5-,.65-& = .62

!"#$%&'&%% = 1
!$,&-#./ = 1
!%1./& = 1

23'4 = 0
2"5-,.65-& = .83

Fig. 9: Frames of OD Morphing on USA flight data. (b) shows the critical waypoints w1 = ELP, w2 = REDFN and w3 = LEV, respectively.

tasks: i) the bundled trajectories are inaccurately placed, and therefore
have low closeness and overlap scores; ii) TB is also unable to identify
accurate locations where traffic merges or diverges and representative
detour paths for OD patterns.

5.2.2 Planned flight path data
We further evaluate OD Morphing using a dataset of USA domes-
tic planned flight paths collected from a flight tracking website
FlightAware [1]. Note that although airplanes are not constrained to
roads or train tracks, they still need to follow predefined airways within
a margin of deviation. It consists of 4592 planned paths of 9921 USA
domestic flights between the busiest 50 airports [2] in one day. Each
path consists of a sequence of waypoints and reporting locations with
a latitude and a longitude. These paths formulate an airway network
with 5,740 nodes and 12,603 edges.

Fig. 9 (a) shows OD bundles of the flights and their planned paths are
drawn in Fig. 9 (d). Fig. 9 (b) shows the OD bundles passing through
the first critical set of waypoints discovered from their paths. Focusing
on flights between southern California, Texas and Florida, we identified
three critical waypoints w1, w2 and w3. While OD bundling (Fig. 9(a))
would suggest flights pass through the mid-continent via “n”-shape
arches, OD Morphing (Fig. 9(b) to (c)) indicates popular intermedi-
ate waypoints along somewhat straight paths (though not perfectly
straight). Indeed, these waypoints (w1=ELP, w2=REDFN, w3=LEV)
serve as navigation aids to specify flight paths through certain airspaces.
Depending on many factors (e.g., navigation charges, taxes, probability
of delays and rerouting) [6], flights may take alternative paths or de-
tours to travel between OD pairs. Therefore, OD Morphing can help to
make these alternative paths clearer to visualize and potentially help
with identifying congestion.

6 EVALUATING USE CASES WITH DOMAIN EXPERTS

We qualitatively evaluated the usability and usefulness of OD Morphing
with application use sessions and semi-structured interviews with three
domain experts separately. These researchers working on transportation
and urban planning, are not computing researchers and are not affiliated
with the authors. The study serves four purposes: (i) to confirm the
importance of our requirements, (ii) to evaluate the interpretability of
the system, (iii) to provide real examples to showcase the capability
of the system, and (iv) to provide user feedback on the system. Each
session lasted for about 1.5 hours, which included two sessions: (1)
an introduction to OD Morphing and datasets, followed by a tutorial
and a user-practice session, (2) a usage session where experts were
asked to use the system to explore patterns, interpret and discuss their
findings, and (3) a post-use interview where experts commented on the
system capabilities, and compared with the baselines (OD Bundling,
Trajectory Heatmap, and Trajectory Bundling). In the following, we
present the interpretation by experts, two observed use cases, and report
the experts’ perceived usefulness and feedback for improvement.

6.1 Interpretability and Usefulness
The experts were asked to use the system to explore both the taxi and
flight data described in Section 5.2. A typical use is to first browse
the whole morphing process from OD bundles to trajectory heatmap.
The expert then quickly gets the initial understanding of “how these
vehicles and airplanes detour when traveling” (Expert 1). Then the
expert focuses on observing the intermediate states by sliding the scrub

bar (scrubber) back and forth. Experts interpreted the intermediate
states showing the important intersections and the commonly used roads
between certain ODs. Expert 2 (E2) found the tool useful and said “this
is very cool. From the beginning you can see the origins, destinations
and their connections, and then from the intermediate states you can
see where are the important intersections between OD.” E1 remarked
that “by moving forward and backward, I can see some popular routes
also share similar OD”. E3 commented that “this movement is quite
interesting, it is simulating how the traffic flow gather from or to certain
points on roads. The waypoints give me the impression that these
are the most busy intersections on the network.” These comments
demonstrate the usefulness of OD Morphing. The experts confirmed
that the proposed criteria for critical waypoints (Sec 3.1) are sufficient
and help to identify bottlenecks in the traffic network, and that the
requirements for OD Morphing (Sec 3.2) are sufficient.

6.2 Two use cases

We observed two use cases with OD Morphing.
1) Exploring travel detours and road usages. Experts pointed

out the morphing process helped them to know how travelers choose
certain parts of ring roads as detours. E3 mentioned that “from the
morphing I find that ring roads actually bring the most traffic from city
center to suburb.” She also noticed a bundle of trips between north
and east choose the outer ring road instead of a more direct route. She
reasoned that “this ring road must be the high-speed road because it is
much longer than the route close to the city center.” They also noticed
that some travelers choose different ring roads even through they have
similar OD. As E2 pointed out, there is a group of travelers from airport
to the north-west region, “some of them choose this outer ring road,
and the others choose the second-ring road.”

On the other hand, with Trajectory Bundling (TB), all experts agreed
that they could not identify accurate detour paths for the ODs from
TB, although it clearly shows the shape of corridors between regions.
Some reported being confused. E1 misinterpreted that “the bundled
trajectories should be sharing the same roads, but they are not.” E2
and E3 found that the trajectory bundles were “too abstract to learn any
information except the network structure” which is not useful to the
traffic analysis. E3 also noticed that trajectory bundles split in different
frames, but “the locations of the splitting keeps shifting which is quite
wrong”. In contrast, OD Morphing provides more accurate information
such as “exact locations where traffic merge”[E3], which is useful to
identify the detoured routes.

2) Identifying origins and destinations associated with busy

road intersections. By visually tracking the movement of OD bundles
to pass through waypoints, all the experts confirmed that the first few in-
termediate states clearly identified the busiest intersections (waypoints)
that are likely to get congested. They could also identify which ODs
cause the congestions. E1 mentioned that “the movement clearly shows
me that most people from the airport need to go through this waypoint
[w2] to the city center”, which demonstrates that the morphing steps
can help E1 visually associate the OD bundle with the waypoint. The
experts all agreed that OD information is fundamental for analyzing
traffic and has been used to alleviate congestions [55]. E1 said “as a
transportation researcher, it is important to know where is congestion,
and it is nice to know if the congested location comes from certain
ODs. Policy makers can do something about the OD.” E3 said “[the]
trajectory heatmap may be useful to study detailed traffic flow at a

8

© 2019 IEEE. This is the author’s version of the article that has been published in IEEE Transactions on Visualization and
Computer Graphics. The final version of this record is available at: 10.1109/TVCG.2019.2934657

Fig. 10: Critical waypoints generated by G-MC and BK-MC.

certain location, but for my research, I also care about OD because the
land use of OD can fundamentally influence the traffic situation. I find
OD Morphing is really useful because I can easily get two kinds of
information at the same time.”

In contrast, with OD bundling or Trajectory Heatmap, all the ex-
perts agreed that they could not get such information when using OD
bundling and Trajectory Heatmap. E1 “thought the [OD] bundles are
the paths but after checking the base map carefully I find that is not
true, they did not correspond with any actual roads.” While they found
the trajectory heatmap is helpful to see the traffic volume, it failed to
illustrate OD patterns. Instead, OD Morphing “nicely combines the
two information and it is great to see busy intersections and roads taken
by major ODs from the morphing in-between.” [E2].

6.3 Feedback and Suggestions for Improvement
All the experts were confident that OD Morphing will be helpful for
the exploration of mobility and transportation datasets. E3 mentioned
that “it is very easy to use and will be useful if I can apply it with my
subway transportation data. I think it can help me to know the popular
OD stations and the important interchange station between them.” E1
pointed out “although it takes me some effort to observe the morph-
ing process, but I do get valuable information like commonly used
roads under the context of OD.” The experts also provided constructive
suggestions such as using different colors to show different bundles
and adding more interactions such as data selection, highlighting and
zooming, which we will consider for the future work.

7 EFFICIENCY PERFORMANCE

We implemented OD Morphing on a visualization platform OmniSci
[3] , which supports the off-screen GPU rendering for large-scale spatial
data, and a workstation with an Intel Xeon E5-2650 CPU and a GeForce
GTX 1080 Ti GPU. We programmed KDEEB and smooth morphing
animation using C++ and OpenGL, and the min-cut algorithm (for
waypoint finding) using the graph-tool python graph library.

OD Morphing takes 1.6 seconds and 0.82 seconds to generate a
frame for the taxi dataset and flight dataset, respectively. The rendering
time per frame takes 0.02 seconds on OmniSci. To evaluate perfor-
mance with the proposed grid min-cut algorithm (G-MC) for waypoint
finding, we compare it with the traditional Boykov-Kolmogorov min-
cut algorithm (BK-MC) on the taxi and flight datasets. BK-MC takes
around 2.674 seconds to find the minimum node cut on the flow graph,
while G-MC takes around 1.2 seconds with a grid size of 0.01⇥0.01km.
By setting a greater grid size, G-MC takes shorter time, as shown in
Fig. 11 (a). We measure the gap between G-MC and BK-MC by the
average distance between the optimal waypoint and its approximation
on each path. The red line in Fig. 11 (a) shows the gap with different
grid sizes. We can see the gap becomes larger with a larger grid size.
We plot the two sets of waypoints generated by BK-MC and G-MC
with grid size of 0.01km in Fig. 10. We can see most of waypoints from
the two sets are overlapping with each other, indicating small gap.

On flight data, BK-MC takes around 2.437 seconds to find the mini-
mum node cut, while G-MC takes around 0.5 seconds with a grid size
of 2⇥2km. As shown in Fig. 11 (b), the computation time decreases
while optimal gap increases as the grid size becomes larger. It is worth
to note that the gap of the flight data is much larger than that of taxi
data. This is because each flight path consists of very sparse nodes

0.01 0.02 0.03 0.04 0.05

Grid Size (km)

0

0.5

1

C
o
m

p
u
a
tio

n
 T

im
e
 (

se
c)

0.02

0.04

0.06

0.08

0.1

A
vg

.
O

p
tim

a
l G

a
p
 (

km
)

Computation Time
Optimal Gap

(a) Taxi dataset

2 3 4 5 6 7 8

Grid Size (km)

0

0.2

0.4

0.6

C
o

m
p

u
a

tio
n

 T
im

e
 (

se
c)

20

30

40

50

60

A
vg

.
O

p
tim

a
l G

a
p

 (
km

)

Computation Time
Optimal Gap

(b) Flight dataset
Fig. 11: Efficiency vs optimal gap.

and flight paths are much longer than taxi paths. The average distance
between two successive nodes on a flight path is 87 km.

8 DISCUSSION

We discuss how to generalize the use of OD Morphing to application
domains, other datasets, and improvements to reducing misleadingness.

Application domains. By providing a seamless way to combine
OD bundling and trajectory visualization, OD Morphing helps users
to understand key origin-destination connections and the paths that
connect them at various waypoints. This is useful for application
domains such as urban or transportation planning to help planners
find highly connected regions and their popular transportation spots to
identify causes of congestion [57].

Generalization to other datasets. OD Morphing can be readily
applied to, but not limited to, trajectories of any moving physical
objects in 2D or 3D graphs, such as vehicle GPS trajectories on a road
network and flight trajectories on an airway network. OD Morphing
can also be applied to datasets without or with very sparse trajectory
information, such as animal trafficking, plant pathogen and pest spread,
and migration. Techniques such as shortest path matching [43] can be
used to estimate likely paths taken. OD Morphing can then be applied
to visualize popular paths from the OD bundling visualization, but
with the caveat that these paths and waypoints were actually estimated
rather than extracted from actual data. However, OD Morphing is
not applicable to the broadcast communication networks and social
relationship networks where a data item cannot be distinguished by an
origin and a destination.

Other misleadingness. OD Morphing addresses the misleadingness
problem of OD bundling by adding actual waypoints to OD bundling
visualizations and improving path faithfulness. However, some ambigu-
ity can remain when some critical waypoints are obscured or covered
by other intermediate OD bundles. OD Morphing can be extended to
include edge ambiguity methods, such as edge routing [39] to further
shift curves to avoid revealed critical waypoints. We will also con-
sider to use colors to differentiate OD directions by applying existing
bundling techniques such as [40, 44].

9 CONCLUSION

We have presented a novel OD bundling technique, OD Morphing, that
improves geographical faithfulness to actual paths while preserving
visual simplicity for OD patterns. OD Morphing recursively identi-
fies critical waypoints from the actual trajectory network with a min-
cut algorithm and transitions OD bundles to pass through identified
waypoints with a smooth morphing method. Next, we extended OD
Morphing to support bundling at interaction speeds to enable users to
interactively transition between degrees of faithfulness to aid sensemak-
ing. We introduce metrics for faithfulness and simplicity to evaluate
their trade-off achieved by OD morphed bundling. We evaluated OD
Morphing on city-scale taxi trajectory and domestic USA flight datasets,
showing that OD Morphing generates more faithful visualizations with
higher OD simplicity than traditional trajectory bundling.

ACKNOWLEDGMENTS

We thank the domain experts for their expert evaluation and feedback.
We also thank Hangxin Lu, Shuqi Wang, Ashraf Abdul for their as-
sistance. This work was supported in part by Ministry of Education,
Singapore, and the National Natural Science Foundation of China under
Grant No. 61872049.

9

https://doi.org/10.1109/TVCG.2019.2934657

REFERENCES

[1] https://flightaware.com/.
[2] https://en.wikipedia.org/wiki/List_of_the_busiest_
airports_in_the_United_States.

[3] https://www.omnisci.com/.
[4] S. Al-Dohuki, Y. Wu, F. Kamw, J. Yang, X. Li, Y. Zhao, X. Ye, W. Chen,

C. Ma, and F. Wang. Semantictraj: A new approach to interacting with
massive taxi trajectories. IEEE Transactions on Visualization & Computer
Graphics, 23(1):11–20, 2017.

[5] H. Alt and M. Godau. Computing the fréchet distance between two
polygonal curves. International Journal of Computational Geometry &
Applications, 5:75–91, 1995.

[6] G. Andrienko, N. Andrienko, G. Fuchs, and J. M. C. Garcia. Clustering
trajectories by relevant parts for air traffic analysis. IEEE transactions on
visualization and computer graphics, 24(1):34–44, 2017.

[7] G. Andrienko, N. Andrienko, S. Rinzivillo, M. Nanni, D. Pedreschi, and
F. Giannotti. Interactive visual clustering of large collections of trajectories.
In IEEE Symposium on Visual Analytics Science and Technology, pages
3–10, 2009.

[8] N. V. Andrienko and G. L. Andrienko. Spatial generalization and aggre-
gation of massive movement data. IEEE Transactions on Visualization &
Computer Graphics, 17(2):205–219, 2011.

[9] B. Bach, N. H. Riche, C. Hurter, K. Marriott, and T. Dwyer. Towards
unambiguous edge bundling: Investigating confluent drawings for network
visualization. IEEE Transactions on Visualization & Computer Graphics,
23(1):541–550, 2017.

[10] Y. Boykov and V. Kolmogorov. An experimental comparison of min-
cut/max-flow algorithms for energy minimization in vision. IEEE Trans-
actions on Pattern Analysis & Machine Intelligence, (9):1124–1137, 2004.

[11] J. E. Bresenham. Algorithm for computer control of a digital plotter. IBM
Systems journal, 4(1):25–30, 1965.

[12] W. Cui, H. Zhou, H. Qu, P. C. Wong, and X. Li. Geometry-based edge
clustering for graph visualization. IEEE Transactions on Visualization
Computer Graphics, 14(6):1277–1284, 2008.

[13] J. Edmonds and R. M. Karp. Theoretical improvements in algorithmic
efficiency for network flow problems. Journal of the ACM, 19(2):248–264,
1972.

[14] O. Ersoy, C. Hurter, F. Paulovich, G. Cantareiro, and A. Telea. Skeleton-
based edge bundling for graph visualization. IEEE Transactions on Visu-
alization Computer Graphics, 17(12):2364–2373, 2011.

[15] D. A. Field. Laplacian smoothing and delaunay triangulations. Applied
Numerical Mathematics, 4(6):709–712, 1988.

[16] E. R. Gansner, Y. Hu, S. North, and C. Scheidegger. Multilevel ag-
glomerative edge bundling for visualizing large graphs. In IEEE Pacific
Visualization Symposium, pages 187–194, 2011.

[17] D. Guo and X. Zhu. Origin-destination flow data smoothing and mapping.
IEEE Transactions on Visualization & Computer Graphics, 20(12):2043–
2052, 2014.

[18] H. Guo, Z. Wang, B. Yu, H. Zhao, and X. Yuan. Tripvista: Triple perspec-
tive visual trajectory analytics and its application on microscopic traffic
data at a road intersection. In IEEE Pacific Visualization Symposium, pages
163–170, 2011.

[19] J. Heer and G. Robertson. Animated transitions in statistical data graphics.
IEEE transactions on visualization and computer graphics, 13(6):1240–
1247, 2007.

[20] J. Heer and B. Shneiderman. Interactive dynamics for visual analysis.
ACM Queue, 10(2):30, 2012.

[21] D. Holten. Hierarchical edge bundles: Visualization of adjacency relations
in hierarchical data. IEEE Transactions on Visualization & Computer
Graphics, 12(5):741–748, 2006.

[22] D. Holten and J. J. Van Wijk. Force-directed edge bundling for graph
visualization. In Computer graphics forum, volume 28, pages 983–990.
Eurographics, 2009.

[23] X. Huang, Y. Zhao, C. Ma, J. Yang, X. Ye, and C. Zhang. Trajgraph:
A graph-based visual analytics approach to studying urban network cen-
tralities using taxi trajectory data. IEEE Transactions on Visualization &
Computer Graphics, 22(1):160–169, 2016.

[24] C. Hurter, O. Ersoy, S. I. Fabrikant, T. R. Klein, and A. C. Telea. Bundled
visualization of dynamic graph and trail data. IEEE Transactions on
Visualization & Computer Graphics, 20(8):1141–1157, 2014.

[25] C. Hurter, O. Ersoy, and A. Telea. Graph bundling by kernel density
estimation. In Computer Graphics Forum, volume 31, pages 865–874.

Eurographics, 2012.
[26] C. Hurter, S. Puechmorel, F. Nicol, and A. Telea. Functional decom-

position for bundled simplification of trail sets. IEEE Transactions on
Visualization & Computer Graphics, 24(1):500–510, 2018.

[27] C. Hurter, A. Telea, and O. Ersoy. Moleview: An attribute and structure-
based semantic lens for large element-based plots. IEEE Transactions on
Visualization & Computer Graphics, 17(12):2600–2609, 2011.

[28] A. Lambert, R. Bourqui, and D. Auber. Winding roads: Routing edges
into bundles. In Computer Graphics Forum, volume 29, pages 853–862.
Eurographics, 2010.

[29] A. Lhuillier, C. Hurter, and A. Telea. Ffteb: Edge bundling of huge graphs
by the fast fourier transform. In IEEE Pacific Visualization Symposium,
pages 190–199, 2017.

[30] A. Lhuillier, C. Hurter, and A. Telea. State of the art in edge and trail
bundling techniques. In Computer Graphics Forum, volume 36, pages
619–645. Eurographics, 2017.

[31] H. Liu, Y. Gao, L. Lu, S. Liu, H. Qu, and L. M. Ni. Visual analysis of route
diversity. In IEEE Symposium on Visual Analytics Science and Technology,
pages 171–180, 2011.

[32] Y. Lou, C. Zhang, Y. Zheng, X. Xie, W. Wang, and Y. Huang. Map-
matching for low-sampling-rate gps trajectories. In ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems,
pages 352–361. ACM, 2009.

[33] A. Lozano, F. Granados, and A. Guzmán. Impacts of modifications on
urban road infrastructure and traffic management: a case study. Procedia-
Social and Behavioral Sciences, 162:368–377, 2014.

[34] S.-J. Luo, C.-L. Liu, B.-Y. Chen, and K.-L. Ma. Ambiguity-free edge-
bundling for interactive graph visualization. IEEE Transactions on Visual-
ization Computer Graphics, 18(5):810–821, 2012.

[35] Q. Nguyen, P. Eades, and S.-H. Hong. Streameb: Stream edge bundling.
In International Symposium on Graph Drawing, pages 400–413. Springer,
2012.

[36] Q. Nguyen, S.-H. Hong, and P. Eades. Tgi-eb: A new framework for edge
bundling integrating topology, geometry and importance. In International
Symposium on Graph Drawing, pages 123–135. Springer, 2011.

[37] V. Peysakhovich, C. Hurter, and A. Telea. Attribute-driven edge bundling
for general graphs with applications in trail analysis. In IEEE Pacific
Visualization Symposium, pages 39–46, 2015.

[38] S. Pupyrev, L. Nachmanson, S. Bereg, and A. E. Holroyd. Edge routing
with ordered bundles. In International Symposium on Graph Drawing,
pages 136–147. Springer, 2011.

[39] S. Pupyrev, L. Nachmanson, S. Bereg, and A. E. Holroyd. Edge routing
with ordered bundles. Computational Geometry, 52:18 – 33, 2016.

[40] D. Selassie, B. Heller, and J. Heer. Divided edge bundling for directional
network data. IEEE Transactions on Visualization Computer Graphics,
17(12):2354–2363, 2011.

[41] G. Sun, R. Liang, H. Qu, and Y. Wu. Embedding spatio-temporal informa-
tion into maps by route-zooming. IEEE Transactions on Visualization &
Computer Graphics, (5):1506–1519, 2017.

[42] A. Telea and O. Ersoy. Image-based edge bundles: Simplified visualization
of large graphs. In Computer Graphics Forum, volume 29, pages 843–852.
Eurographics, 2010.

[43] M. Thöny and R. Pajarola. Vector map constrained path bundling in 3d en-
vironments. In ACM SIGSPATIAL International Workshop on GeoStream-
ing, pages 33–42, 2015.

[44] M. Van Der Zwan, V. Codreanu, and A. Telea. Cubu: Universal real-
time bundling for large graphs. IEEE Transactions on Visualization &
Computer Graphics, 22(12):2550–2563, 2016.

[45] V. Vineet and P. Narayanan. Cuda cuts: Fast graph cuts on the gpu. In
IEEE Computer Vision and Pattern Recognition Workshops, pages 1–8,
2008.

[46] K. Vrotsou, H. Janetzko, C. Navarra, G. Fuchs, D. Spretke, F. Mansmann,
N. Andrienko, and G. Andrienko. Simplifly: A methodology for simplifi-
cation and thematic enhancement of trajectories. IEEE Transactions on
Visualization & Computer Graphics, 21(1):107–121, 2015.

[47] Y. Wang, Q. Shen, D. Archambault, Z. Zhou, M. Zhu, S. Yang, and H. Qu.
Ambiguityvis: Visualization of ambiguity in graph layouts. IEEE Trans-
actions on Visualization & Computer Graphics, 22(1):359–368, 2016.

[48] N. Wong and S. Carpendale. Using edge plucking for interactive graph
exploration. In IEEE Symposium on Information Visualization, pages
51–52, 2005.

[49] N. Wong, S. Carpendale, and S. Greenberg. Edgelens: An interactive
method for managing edge congestion in graphs. In IEEE Symposium on

10

https://flightaware.com/
https://www.omnisci.com/

© 2019 IEEE. This is the author’s version of the article that has been published in IEEE Transactions on Visualization and
Computer Graphics. The final version of this record is available at: 10.1109/TVCG.2019.2934657

Information Visualization, pages 51–58, 2003.
[50] J. Wood, J. Dykes, and A. Slingsby. Visualisation of origins, destinations

and flows with od maps. The Cartographic Journal, 47(2):117–129, 2010.
[51] J. Wu, Z. Gao, and H. Sun. Effects of the cascading failures on scale-free

traffic networks. Physica A: Statistical Mechanics and its Applications,
378(2):505–511, 2007.

[52] L. Xin, D. Yang, Y. Chen, and Z. Li. Traffic flow characteristic analysis
at intersections from multi-layer spectral clustering of motion patterns
using raw vehicle trajectory. In IEEE Intelligent Transportation Systems
Conference, pages 513–519, 2011.

[53] M. Xu, J. Wu, M. Liu, Y. Xiao, H. Wang, and D. Hu. Discovery of critical
nodes in road networks through mining from vehicle trajectories. IEEE
Intelligent Transportation Systems Conference, (99):1–11, 2018.

[54] Y. Yang, T. Dwyer, S. Goodwin, and K. Marriott. Many-to-many
geographically-embedded flow visualisation: an evaluation. IEEE Trans-
actions on Visualization & Computer Graphics, 23(1):411–420, 2017.

[55] W. Zeng, C.-W. Fu, S. Müller Arisona, A. Erath, and H. Qu. Visualiz-
ing waypoints-constrained origin-destination patterns for massive trans-
portation data. In Computer Graphics Forum, volume 35, pages 95–107.
Eurographics, 2016.

[56] W. Zeng, Q. Shen, Y. Jiang, and A. Telea. Route-aware edge bundling for
visualizing origin-destination trails in urban traffic. Computer Graphics
Forum, 2019.

[57] Y. Zheng, Y. Liu, J. Yuan, and X. Xie. Urban computing with taxicabs. In
ACM International Conference on Ubiquitous Computing, pages 89–98,
2011.

[58] Z. Zhou, L. Meng, C. Tang, Y. Zhao, Z. Guo, M. Hu, and W. Chen. Visual
abstraction of large scale geospatial origin-destination movement data.
IEEE Transactions on Visualization & Computer Graphics, 25(1):43–53,
2019.

[59] D. Zielasko, B. Weyers, B. Hentschel, and T. W. Kuhlen. Interactive 3d
force-directed edge bundling. In Computer Graphics Forum, volume 35,
pages 51–60. Eurographics, 2016.

11

https://doi.org/10.1109/TVCG.2019.2934657

	Introduction
	Related Work
	OD Bundling
	Trajectory Visualization

	Definitions and requirements
	Definitions
	Requirements

	OD Morphing
	OD bundling
	Waypoint Finding
	Smooth Morphing
	Iteration process for degrees of faithfulness
	Interactive-Speed Grid-Based Waypoint Finding

	Evaluation
	Metric
	Faithfulness
	Simplicity
	Baseline

	Application Datasets
	Taxi trajectory data
	Planned flight path data

	Evaluating use cases with domain experts
	Interpretability and Usefulness
	Two use cases
	Feedback and Suggestions for Improvement

	Efficiency Performance
	Discussion
	Conclusion

