
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 1

Imma Sort by two or more attributes with
Interpretable Monotonic Multi-Attribute Sorting

Yan Lyu, Fan Gao, I-Shuen Wu, and Brian Y. Lim

Abstract—Many choice problems often involve multiple attributes which are mentally challenging, because only one attribute is neatly
sorted while others could be randomly arranged. We hypothesize that perceiving approximately monotonic trends across multiple
attributes is key to the overall interpretability of sorted results, because users can easily predict the attribute values of the next items.
We extend a ranking principal curve model to tune monotonic trends in attributes and present Imma Sort to sort items by multiple
attributes simultaneously by trading-off the monotonicity in the primary sorted attribute to increase the human predictability for other
attributes. We characterize how it performs for varying attribute correlations, attribute preferences, list lengths and number of
attributes.We further extend Imma Sort with ImmaAnchor and ImmaCenter to improve the learnability and efficiency to search sorted
items with conflicting attributes. We demonstrated usage scenarios for two applications and evaluate its learnability, usability,
interpretability and user performance in prediction and search tasks. We found that Imma Sort improved the interpretability and
satisfaction of sorting by ≥ 2 attributes. We discuss why, when, where, and how to deploy Imma Sort for real-world applications.

Index Terms—Multi-attribute sorting, decision making, interpretability, human predictability, predictive interpretability.
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1 INTRODUCTION

WHEN choosing an item from a list, it is common to sort
the list by some attribute to allow comparison. How-

ever, consumer decision making often involves comparing
across multiple attributes. For example, when choosing
where to stay, we can sort hotel listings by price or distance
to a point-of-interest. This can be mentally challenging
because while one attribute is neatly sorted, the others
could be randomly arranged. Common methods to consider
multiple attributes include i) sorting by one attribute at a
time, then switching to sort by another, ii) first filtering by
one attribute, then sorting by another [1], iii) sorting by a
weighted utility preference, e.g., simple additive weighting,
that summarizes multiple attributes into a score [2], or iv)
analyzing with large interactive spreadsheets [3], [4], [5].
Nevertheless, it remains challenging for users to seamlessly
and intuitively sort with more than one attribute without
performing context switching and storing the previous at-
tribute values in working memory.

In this paper, we study the intuitiveness and inter-
pretability of multi-attribute sorting and present Imma Sort,
a sorting objective that optimizes the human predictability
of sort results. Our first key insight is that sorting values by
one attribute provides an intuitive basis for comparison, as
it allows users to anticipate the attribute value of an item at a
position in the list. That is, a simple sorted list is interpretable
by its sorted attribute because it provides a monotonically
increasing or decreasing trend, which improves the ease
of prediction for the attribute. In contrast, that list will be
less interpretable by other unsorted attributes due to the
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their lack of clear trend. However, we argue that users
can still predict the value of an attribute as long as it has
an approximately monotonic trend, i.e., roughly increasing or
decreasing with small fluctuations. Thus, our second key
insight is to trade off the monotonicity in the first sorted
attribute to improve the trend perception of a second or
other attributes. This improves the overall ease of prediction
for multiple attributes. Fig. 1 and Fig. 2 show how Imma
Sort reduces the monotonicity for one attribute to increase it
for another, compared to simple one-attribute sort.

Hence, with Imma Sort, we support Interpretable, Mono-
tonic, Multi-Attribute sorting. While most work on sorting
and ranking have focused on the usefulness and accuracy of
sorted results [2], [6] or interpretability of sort methods [3],
[7], there is a lack of research on the interpretability of sorted
results. To address this gap, this is the first work to define
and study the human predictability for multiple attributes of
sorted results. This adds to the fundamental understanding
of their usability and opens up research on optimizing
sorted results for human interpretability. It is related to but
distinct from research in recommendation systems, interac-
tive visualization, and interpretable machine learning.

Imma Sort leverages a ranking principal curve model
(RPC) [8] to maintain the monotonicity of each attribute. We
further improve it to enable users to tune the monotonic
smoothness for different attributes based on their prefer-
ences. RPC was proposed to produce an aggregated ranking
that has the most agreement with each individual ranking.
However, it remains unclear how usable and interpretable
this is to support search tasks. Our contributions are:
• The notion of predictive interpretability to quantify the

usability of multi-attribute sorting as approximate mono-
tonicity to perceive trends in sorted items. We support
the tunability of trend smoothness for each attribute.

• Mock-up demonstrations and usage scenarios of Imma
Sort for various consumer decision making applications.
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Fig. 1: Imma Sort orders items such that they are approximately monotonic in multiple attributes. In the sorted hotel list,
the prices (blue line) are mostly increasing while the distances (orange line) to downtown are mostly decreasing.

(a) Imma Sort (b) One-attribute Sort by Price

(c) Simple Additive Weighting (d) One-attribute Sort by Distance

Fig. 2: A list of 100 Airbnb rentals1 sorted by different
techniques. x-axis shows the sort order, and y-axis shows
values of two attributes, i.e., price and distance. (a) Imma
Sort presents both attributes in monotonic trends with small
fluctuation; (b) and (d) One-attribute sort presents one
attribute monotonically but the other one randomly; (c)
Simple Additive Weighting sorts by a two-attribute utility
score (gray) but randomly orders both attributes.

• Characterization of how well Imma Sort could improve
the ease of prediction in a simulation study when sorting
items from both synthetic and real datasets.

• Evaluation showing that Imma Sort improved user pre-
diction of item multi-attribute values, search performance
to find user-preferred multi-attribute items, search satis-
faction and helpfulness compared to baselines.

2 SCOPE AND RELATED WORK

In this paper, we focus on defining, improving and eval-
uating the human interpretability of a sort result, not
model interpretability [9]. We investigated the trade-off of
tuning approximate monotonic trends to transition from
single-attribute to multi-attribute sort, which is separate
from studying how to elicit user ranking or utility prefer-
ences [10], [11]. We do not propose a recommender system
to prioritize items by relevance, but Imma Sort can be used
to post-process and sort a list of top recommended items.
Imma Sort provides a new arrangement of items in a list,
not a new visualization or interactive technique [3], [5].
It can be added to existing list user interfaces, such as e-
commerce product search results, by adding a sort mode
and displaying items in the original list layout.

Many multi-attribute sorting/ranking and machine
learning based ranking techniques have been developed to
support decision making. We discuss how these techniques
assume that users will trust their method, mathematics or
mechanisms, yet produce results that appear unintuitively
unsorted by single attributes and this hurts interpretation.

1. We randomly sampled rentals with location and price information
from Airbnb dataset, http://insideairbnb.com/get-the-data.html

2.1 Multi-Attribute Decision Making Techniques

Ranking items based on multiple attributes has been well-
studied in decision theory literature [2]. Simple additive
weighting (SAW) [12], [13] is a popular method which ranks
item based on a utility score calculated as a weighted sum of
multiple attributes. More sophisticated techniques include
multi-attribute utility theory (MAUT) [14] that introduces
uncertainty about the consequences, analytic hierarchy pro-
cess (AHP) [15] that structures the decision making process
through pairwise comparisons, TOPSIS [16] that ranks items
based on the distances to positive and negative ideal solu-
tions, and outranking methods such as PROMETHEE [17],
[18] and ELECTRE [19] that consider the relative ordering
of each single attribute. The resulting rank of an item rep-
resents a summary of complicated relationships between its
attributes and those of the other items. Such results are often
hard for users to understand why an item has a lower or a
higher rank than others [3], and can stifle decision making.

Intuitiveness and Interpretability. To interpret multi-
attribute sorting/ranking, existing techniques provide users
visualization interfaces to interact with ranking and at-
tribute values. Users can manually refine attribute combina-
tions [3], [20], [21], track rank changes [3], [22], [23], inspect
attribute weights or preferences [4], [24], [25], and compare
multiple alternative rankings [3], [26], [27]. Some also focus
on eliciting user preference on multiple attributes from user
interactions [5], [10]. However, while these visual tools pro-
vide deep insight and support rigorous multi-attribute deci-
sion making, they are designed for data analysis, i.e., users
need to spend a lot of time to understand a ranking through
a series of interactions. Also, they focused on evaluating
the basic usability of sorting [3], [20], [21], [22], [26] rather
than the interpretability of sorted results. With Imma Sort,
we focus on the more lightweight interaction of browsing a
sorted list, which is also suitable for frequent and limited
consumer decision-making [28], such as choosing hotels
and foods, instead of intensive analytical interaction. This
requires the sorted list itself to be intuitively interpretable.
This is the first work to evaluate the intuitive interpretability
and ease of prediction of sorted results.

2.2 Machine Learning based Ranking Techniques

More recently, many machine learning methods have been
developed to generate the best ranking in the domain of in-
formation retrieval and recommendation systems. Learning
to rank algorithms [6], [29], [30], [31], [32], [33] apply su-
pervised learning to rank items based on training data that
consists of lists of items with ground-truth rank scores or
partial orders. While these algorithms are designed to best
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satisfy user preferences or information relevance, the ranked
attributes are usually latent features, such as factorized user-
item ratings. Therefore, the result rankings are even more
uninterpretable with respect to the visible attributes. In ad-
dition, unsupervised ranking techniques aggregate different
rankings generated under multiple criteria [34], [35], [36] by
optimizing a “consensus” of the rankings. The consensus
has been defined by various distance metrics between the
rankings, such as Kendall’s τ [34], Spearman ρ [37] and
Hausdrodff distance [38]. Li et al. [8] further extended the
concept of consensus to an “order-preserving” monotonicity
requirement to produce an aggregated ranking that is “closer
to ground truth”, i.e., in more agreement with each individ-
ual ranking. However, none of these works evaluated the
interpretability of the aggregated ranking result.

Intuitiveness and Interpretability. The increasing so-
phistication in models have driven the need for explanation
techniques, such as LIME [39], which have been adapted to
explain black-box rankers [7], [40], [41]. These explanation
by relevance [42], association [43], user preferences [9],
using auxiliary information such as textual sentences [44] or
visual image [45], and includes designing novel explanation
interfaces [46]. However, these explanations mostly focus
on why the top items were selected from the search or
recommendation models, and not about their relative order,
i.e., why an item is ranked higher/lower others. In contrast,
Imma Sort focuses on human ease of prediction for multiple
attributes and optimizes their monotonicity for intuitive
interpretability. Specifically, we leverage a ranking principal
curve model proposed by [8], and extend its capability
with a tunable parameter to trade off monotonicity between
attributes based on user preference. Our key contribution is
defining and studying human interpretability and ease of
prediction for multiple attributes of sorted results.

3 IMMA SORT: INTUITION AND APPLICATIONS

To help appreciate the value of Imma Sort and understand
how to use it, we describe its intuition and requirements,
and illustrate its usage with three application examples.

3.1 Intuition and Requirements

Sorting helps users to intuitively compare and search for
items. We assert that this is because users can perceive
monotonic trends in the sorted attribute, and easily predict
where an item with an expected value will be and predict
that items far away will have very dissimilar values. We
call this perception predictive interpretability. For example,
sorting products with price in ascending order helps users
to anticipate that the next item will be a higher price, and an
item with a much higher price will be much farther along.
Users can stop considering subsequent items when they
anticipate that remaining items will be more expensive than
a threshold. Therefore, we hypothesize that monotonicity
in the attributes of a sorted list helps users to predict the
attribute values of subsequent items and quicken search.

Likewise, we argue that predictive interpretability helps
to reduce human memory load when reading and searching
sorted lists of items, including simple list interfaces for e-
commerce applications, such as finding a hotel, movie, or

food dish. When items are not sorted, users have to “jump
around” to find comparable items with similar values and
store them in working memory as a ranked list with de-
scending or ascending values. Participants in our qualitative
user study reported this mental effort. When items are
neatly sorted, users can see the clear trend of values across
neighboring items and externalize the information in the
list interface instead. This clear trend with higher predictive
interpretability helps users to predict that there are not likely
to be any items with closely comparable attribute values far
away. So, users would not need to mentally construct their
own ranked list when searching farther down the list, and
this reduces the strain on working memory. The decrease in
memory demands can improve consumer choice and ease
of decision-making [47], [48]. Therefore, we hypothesize that
improving predictive interpretability can improve user satisfaction
in search tasks on sorted lists by reducing cognitive load.

Furthermore, many choice problems often involve mul-
tiple attributes and this is more mentally challenging. When
one primary attribute is neatly sorted, other secondary
attributes could be unsorted and randomly ordered. Users
could strain their working memory by searching an un-
sorted list as aforementioned, or toggle between re-sorting
by different attributes or pre-filter by other attributes. Such
context switching also puts a strain on working memory
and hurts consumer choice and ease of decision making [47],
[48]. Therefore, this motivates us to make multiple attributes
more predictable by designing Imma Sort to present items
sorted simultaneously by two or more attributes.

With Imma Sort, users will be able to perceive approx-
imate monotonic trends for more than one attribute, and
more easily predict values of multiple attributes as they
navigate down the sorted list. Imma Sort achieves this by
trading off the monotonicity in the first attribute to increase
the monotonicity in the second or subsequent attributes. It
does so in a tunable manner to give the user and application
designer more control on the sorting outcome. Therefore, the
first requirements for Imma Sort to have:
1) Balanced monotonic trends to trade off the monotonicity of

the primary sorted attribute to increase the monotonicity
(ease of prediction) for other attributes.

2) Smoothness preference weights for the monotonic smooth-
ness of each attribute to be tunable based on preference
weights, i.e., more weighted attributes can be more
monotonic than the less weighted attributes.
The novel sort order provided by Imma Sort also

presents a new interaction challenge when the sorted at-
tributes are negatively correlated. Assuming that higher
values of each attribute is better, multi-sorting positively
correlated attributes can rank the best item at the front, but
multi-sorting negatively correlated (conflicting) attributes,
will place the best item somewhere in the middle of the
list. This issue is not unique to Imma Sort, since sorting
with a single attribute may also not place the best item in
the first position. However, with Imma Sort, users can more
easily identify the best item as a compromise between the
conflicting attributes. This manifests as an “X” shape trends
pattern for both attributes (Fig. 1 and Fig. 2(a)). Therefore,
we propose additional requirements for Imma Sort:
3) Anchoring to highlight the best compromise item to help
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(a) Food: Tastiness & Healthiness (b) Movies: Ratings & Popularity

Fig. 3: Mock-ups of list user interfaces using Imma Sort to
sort (a) food dishes based on conflicting attributes Tastiness
and Healthiness (ImmaCenter), and (b) movies based on
correlated attributes Ratings and Popularity (regular Imma).

users to quickly locate and compare around that item.
Users can conventionally search down the list from the
first (left/top) position and note how far down this item
is located. We call this Imma Sort variant ImmaAnchor.

4) Searching from the center to reduce the initial search time
by positioning users to start searching at the best (an-
chor) item. This is especially useful if the first item is
very far from the best item. Note that the best item may
not be located in the center, just not the first position. We
call this variant of Imma Sort as ImmaCenter. Given the
unconventional interaction of ImmaCenter, we studied
its learnability in a qualitative study (Section 7.3).
A key requirement of simple interfaces is to not impose

a high cognitive load on users. By clarifying trends, Imma
Sort improves predictive interpretability and helps to reduce
mental load. This facilitates users to perform multi-attribute
sorting with simple list interfaces, rather than depending on
sophisticated spreadsheets or data analytic visualizations.

3.2 Application Examples

Imma Sort can be integrated into many real-world appli-
cations such as searching and recommendation systems to
help with choice-making. We demonstrate its usefulness in
three real-world illustrations to: select a hotel based on price
and distance to point-of-interest (Fig. 1), select a food dish
that is both healthy and tasty (Fig. 3(a)), and select a movie
that highly rated and popular (Fig. 3(b)). The first example
shows a long list to allow longer-span examination of the
sort order. The first two cases sort conflicting attributes,
while the third sorts correlated attributes. These simple
examples demonstrate the usefulness of Imma Sort for two
attributes, but Imma Sort can also handle > 2 attributes. We
will detail the usage scenarios of Imma Sort in Section 6.
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Fig. 4: Examples of two monotonic cubic Bézier Curves. (a)
shows projections of data points a, b and c on one curve, the
sequence of the projections on the curve suggests a sorting
order a � b � c. (b) shows projections of a, b and c on
another curve, suggesting another order a � c � b.

4 TECHNICAL APPROACH

In the next section, we describe technical approach of how
we achieve sorting by multiple attributes for Imma Sort to
satisfy the four aforementioned requirements. We describe
the intuition of the ranking principal curve (RPC) model [8]
and why it is suitable for Imma Sort (Section 4.1), its solution
(Section 4.2), and our extension to control the monotonic
smoothness of different attributes to help users prioritize
attributes based on preference weights (Section 4.3).

4.1 Mathematical Intuition

Sorting by one attribute may cause other attributes to be ran-
domly ordered, depending on the strength of attribute cor-
relations. Two attributes with perfect rank correlated (Spear-
man coefficient = 1 or −1) can both be strictly monotonic
at the same time, while less correlated attributes cannot.
Consider three items as data points where two attributes
have rank correlation −0.5: a = (0.2, 0.8), b = (0.5, 0.2) and
c = (0.6, 0.5). Sorting by Attribute 1, i.e., a � b � c will not
arrange Attribute 2 strictly monotonically, and vice versa.

Since there is no way to make partially correlated attributes
strictly monotonic simultaneously, we seek to make the
trends approximately monotonic by perturbing data points.
Specifically, we look for approximations of the three data
points, a′, b′, and c′, such that, they can be sorted mono-
tonically for both attributes. The objective is to find the
best approximations that minimize the perturbation, i.e.,
||a − a′||2 + ||b − b′||2 + ||c − c′||2. Principal component
analysis (PCA) models [8], [49], [50] can be used to find
such approximations by searching for a smooth curve that
minimizes the sum of squares distances from the original
item data points to their orthogonal projections on the curve.

We used a monotonic cubic Bézier curve for the data
fitting just as in [8] to obtain the projections with monotonic
points (see Fig. 4(a)). Fig. 4(a) illustrates a cubic Bézier curve
projection that has Attribute 2 monotonically decreasing
as Attribute 1 increases. If we project the data points a, b
and c on this curve, their projections a′, b′, c′ are sorted
strictly monotonically in the sequence on the curve, i.e.,
a′ � b′ � c′. We can apply this sorting order for the original
data points, i.e., a � b � c, but this sort order will only be
approximately monotonic, with smoothness depending on
how small the perturbations were. There can be other Bézier
curve projections that produce different sort orders (e.g.,
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Fig. 4(b) sorts with a � c � b), but we seek to obtain one
that maximizes smoothness, i.e., minimizes perturbation.

4.2 Ranking Principal Curve (RPC) Model

Here we describe the Ranking Principal Curve model to find
the best cubic Bézier curve [8] for multi-attribute sorting.

4.2.1 Cubic Bézier Curve
A cubic Bézier curve, f(s, P ), is defined as

(1− s)3p0 + 3s(1− s)2p1 + 3s2(1− s)p2 + s3p3, (1)

where P = {p0,p1,p2,p3} are the four control points that
determine the curve’s shape, and s specifies a position index
on the curve, 0 ≤ s ≤ 1 (see Fig. 5). As s increases from 0 to
1, the curve starts at p0 (s = 0) going towards p1, then p2
and ends at p3 (s = 1). Each point is in d ≥ 2 dimensions,
one for each attribute. We can control the locations of the
four controls points to make the curve strictly monotonic [8].
Let α = (α1, α2, ..., αd)T denote the monotonicity index for
d attributes, αa = 1 indicates that the ath attribute should
be sorted in ascending order, and αa = −1 indicates de-
scending order. This can be predefined by users, or be data-
driven and set to match the correlations between attributes.
[8] proved that the curve f(s, P ) is strictly monotonic if
and only if p0 = (1 − α)/2, p3 = (1 + α)/2, and p1 and
p2 are bounded such that p1, p2 ∈ [0, 1]d. For example,
if we set α = (1,−1)T , i.e., Attribute 1 ascending and
Attribute 2 descending, then p0 = (0, 1)T , p3 = (1, 0)T

and f monotonic if p1 and p2 are within [0, 1]2 (see Fig. 5).

4.2.2 Problem Definition and Solution
Let X = {x1,x2, ...,xn} denote the set of n data points
to be sorted, where each data point xi has d attributes, i.e.,
xi = (xi,1, xi,2, ..., xi,d)T . For a cubic Bézier curve f(s, P )
with control points P , it projects the data point xi to si on
the curve with projected value f(si, P ). For the smoothest
approximate monotonicity projection, si will be the closest
point on the curve to xi, i.e., si = argmin0≤s≤1 ||xi −
f(s, P )||. We seek to find the set of control points P that
defines the best monotonic curve f(s, P ), such that the sum
of squared distance from xi to its projection f(si, P ) is
minimized, i.e.,

minimize
∑n

i=1
||xi − f(si, P )||2, (2)

subject to si = argmin0≤s≤1 ||xi − f(s, P )||, (3)

p0 = (1−α)/2,p3 = (1 +α)/2, (4)

p1,p2 ∈ [0, 1]d. (5)

Note that this is a non-linear optimization problem, since the
intermediate variable si is determined by decision variables
P (Eq. 3) but cannot be expressed by an explicit function
of P . To solve this problem, [8] adopted the classic Hastie-
Stuetzle principal curve algorithm [49]. The algorithm starts
with a random set of control points P that satisfy Eqs. 4
and 5, iteratively calculates data projections f(si, P ) on the
curve and updates P by minimizing Eq. 2. Li et al. have
proved this algorithm converges in limited iteration steps
and with a computational complexity of O(n) [8] to search
for a local optimal Bézier curve.
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Fig. 5: A cubic Bézier curve with four control points
p0,p1,p2, and p3. The points on the curve can be identified
by a position parameter s, e.g., s = 0.32 and s = 0.65.

4.3 Adding Monotonic Smoothness Control
To control which attributes should be more smoothly mono-
tonic, we introduce smoothness preference weights on different
attributes to the RPC model. Specifically, we insert the
weights into the distance measurement of || · || in Eqs. 2
and 3. Let w = (w1, w2, ..., wd)T denote the weights on
d attributes. Then, the total distance between data points
and their projections on the curve can be measured by a
weighted Euclidean distance, i.e., Eq. 2 can be written as

ε =
∑n

i=1

∑d

a=1
wa(xi,a − f(si, P )a)2, (6)

where f(si, P )a denotes the ath dimension of Bézier curve
and refers to the projection of the ath attribute. Similarly,
the projection of the data points should be re-defined by
minimizing the weighted Euclidean distance, i.e.,

si = argmin0≤s≤1

√∑d

a=1
wa(xi,a − f(s, P )a)2, (7)

where 0 ≤ wa ≤ 1 and
∑

1≤a≤d wa = 1. The weights help
users to specify their preference on attributes. The higher
weight on an attribute, the more monotonic the attribute
will be. At one extreme, if wa = 1 and w 6=a = 0, then
the curve will generate single-attribute sorting by the ath
attribute. We adapted the Hastie-Stuetzle principal curve
algorithm [49] with Eqs. 6 and 7 (details in Appendix).

5 CHARACTERIZATION SIMULATION STUDIES

Having defined the technical approach for Imma Sort,
we next evaluated its performance on synthetic and real
datasets. We hypothesized that improving approximate
monotonicity should improve ease of prediction. We con-
ducted simulation experiments to characterize when and
how much Imma Sort improves the ease of prediction on
multiple attributes. We first describe the estimation of ease
of prediction and then compare Imma Sort with baseline
methods on both synthetic and real datasets.

5.1 Prediction Interval to estimate Ease of Prediction
We use prediction interval to quantify and simulate users’
ease of prediction on attribute values in a sorted list. A
prediction interval (PI) is an estimate of an interval within
which a future observation will fall, with a specified degree
of confidence, given what has already been observed [51].
While a confidence interval describes uncertainty for a
single stochastic variable, a PI describes uncertainty for a
stochastic variable function. A clearer trend with smoother
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monotonicity will have smaller prediction interval width
(|PI|) and be more human predictable. In our prediction
user study (Section 7, Table 1), we found that |PI| is
consistent with users’ uncertainty about their prediction.
Specifically, for each attribute, we fit a cubic regression
model on the sorted items with position as the factor and
attribute value as the response, and calculated the 95% |PI|.

5.2 Baseline Techniques

We compare Imma Sort against three common baseline
sort techniques: i) Simple Additive Weighting (SAW) that
sorts by the weighted sum of normalized attribute values;
ii) Single Sort by the primary Attribute (ByA1) that sorts
based on the attribute on which a user has the highest
preference weight; and iii) Single Sort by the secondary
Attribute (ByA2) that sorts items by the attribute on which
a user has the second highest preference weight.

5.3 Simulation Experiments with Synthetic Data

To characterize how Imma Sort supports better ease of
prediction, we synthesized different datasets with varying
characteristics for search with varying requirements.

5.3.1 Factors for varying datasets and search parameters
We identified four factors that may affect the performance of
multi-attribute sorting techniques. 1) Correlation between at-
tributes, ρ, as calculated by the Spearman’s rank coefficient
to depict the extent to which, as one attribute increases, the
other variable tends to increase or decrease [52]. 2) Attribute
preference weight to indicate user preference on different at-
tributes. For Imma Sort, attribute preference, denoted by w,
refers to how monotonic of a trend in the attribute the user
would want; an attribute a with higher preference wa will
be smoother than another with lower preference. For SAW,
attribute preference, denoted by v, refers to the relative
importance in utility of the attribute, i.e., its importance to
the weighted sum of partial utilities. 3) List length, n, as the
number of items to be sorted. We hypothesize that longer
lists would have smaller |PI|, because more items can
be rearranged to produce smoother and more monotonic
trends. 4) Number of attributes, d, by which to sort items
simultaneously. Sorting by more attributes would increase
|PI|, since it will be more difficult to maintain and balance
the monotonic trends of multiple attributes in the sort result.

We randomly generated synthetic datasets with correla-
tion ρ varying from -1 to 1, list length n varying from 10
to 100 and attribute number d varying from 2 to 6. Each
simulation was repeated 100 times with different datasets to
account for variability in slight differences in item attribute
values in the same simulation settings.

5.3.2 Results
We report simulation results to show the impact of the four
factors, and conclude when and how much Imma Sort im-
proves ease of prediction compared to baseline techniques.

Increasing attribute correlation magnitude for both
positive and negative correlation decreased the prediction
interval width |PI| and improved predictive interpretability
of attributes for most sort techniques (see Fig. 6). This

-1 -0.6 -0.2 0.2 0.6 1
0

0.2

0.4

0.6

0.8

1

-1 -0.6 -0.2 0.2 0.6 1
0

0.2

0.4

0.6

0.8

1

(a) w1 = v1 = w2 = v2 = 0.5

-1 -0.6 -0.2 0.2 0.6 1
0

0.2

0.4

0.6

0.8

1

-1 -0.6 -0.2 0.2 0.6 1
0

0.2

0.4

0.6

0.8

1

Imma

SAW

ByA1

ByA2

(b) w1 = v1 = 0.7;w2 = v2 = 0.3

Fig. 6: Prediction interval width |PI| of both Attributes
1 and 2 decreased (better predictive interpretability) with
increasing correlation magnitude for balanced (a) and im-
balanced (b) weights preferences. Imma Sort has two lines in
(a) to indicate its bimodal distribution for weak correlations
(−0.6 < ρ < 0.6). Error bar is the standard deviation.

general trend is expected, but Fig. 6 shows how |PI| in-
creases sharply as correlation magnitude decreased to 0.
For simplicity in our illustration, we limited our analysis to
number of attributes1 d = 2, and list length2 n = 100. Imma
Sort decreased the |PI| for the second attribute (Attribute
2) by increasing the |PI| for the first attribute (Attribute
1). Although the |PI| for Imma Sort was symmetrical for
positive or negative correlation, the |PI| of SAW was asym-
metrical. For more negative attribute correlations , SAW
sorted items were harder to predict (higher |PI|), while
Imma Sort were easier to predict (lower |PI|). Across the
range of attribute correlations, Imma Sort had lower |PI|
values for negative correlations and similar |PI| for positive
correlations compared to SAW (see Fig. 6(b)), indicating that
it achieved better predictive interpretability overall. Single
sorting, ByA1 or ByA2, perfectly sorted Attribute 1 or 2,
respectively; so the sorted attribute had the smaller |PI| but
the unsorted attribute had the larger |PI|.

Increasing attribute preference weight of Attribute 1
decreased the prediction interval width |PI| and improved
predictive interpretability of Attribute 1 for Imma Sort and
SAW, but increased the |PI| for Attribute 2 (see Fig. 6(b)).
Imma Sort perturbed Attribute 1 values less than Attribute
2 values, leading to smoother monotonicity for Attribute
1 than Attribute 2. SAW similarly had smaller |PI| for
Attribute 1 than Attribute 2, because it sorted items based on
the weighted sum of normalized attributes, which was more
influenced by Attribute 1 than Attribute 2. However, with its
focus to improve monotonicity, Imma Sort had lower |PI|
than SAW for Attribute 1 for all attribute correlations, and
lower |PI| for Attribute 2 for negative attribute correlations.
Note that Single Sort was not influenced by imbalanced at-
tribute preference weights. We also found that for balanced

1. For simplicity to limit the number of additional parameters that
needed to be set for 3 or more attributes.

2. |PI| is mostly stable by 100 items, as shown in Fig. 7.
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attribute preference (w1 = w2 = 0.5), the |PI| for Imma
Sort had a bimodal distribution when attributes were not
strongly correlated, i.e., −0.6 < ρ < 0.6 (see Appendix).
This indicates that slight differences in items led to either
a higher or lower |PI|, but not a |PI| value in between.
To make these trends clear, we applied k-means clustering
on |PI| values for each ρ, and chose k = 1 or 2 based on
the silhouette criterion. We plotted lines through the k mean
values in Fig. 6(a). This bimodal distribution on |PI| did not
occur for unequal weights (Fig. 6(b)).

Increasing list length slightly decreased the attribute
prediction interval width |PI| and slightly improved pre-
dictive interpretability for all sort techniques (see Fig. 7).
This was because more items could be re-arranged to pro-
duce smoother and more monotonic trends. For simplic-
ity, we limitted the analysis to two attributes1, which are
conflicting (ρ = −0.4)3, with Attribute 1 preferred over
Attribute 2 (w1 = v1 = 0.7, w2 = v2 = 0.3)4 The |PI| of
both attributes with Imma Sort was consistently lower than
with SAW, and consistently between that of the sorted (A1)
and unsorted (A2) attributes with Single Sorts.

Smaller number of attributes led to lower prediction
interval width |PI| for all sort techniques (see Fig. 8(b)).
Fig. 8(a) shows that, with Imma Sort, the preferred attribute
was less predictable (higher |PI|) with more attributes,
while all other less preferred attributes were slightly more
predictable (slightly lower |PI|). For simplicity, in this
analysis, we set a pairwise correlation coefficient between
attributes of 0.45. We define the attribute preference weights
as an arithmetic series, wa+1 = wa −∆w, where wd = ∆w
and the weights sum to 1; e.g., when d = 4, the weights of
four attributes are 0.4, 0.3, 0.2 and 0.1, respectively. Fig. 8(b)
shows how less preferred attributes had higher |PI| for all
sort techniques. Overall, Imma Sort had a slightly lower
|PI| than SAW for all the attributes, and lower |PI| than
Single Sort for all non-primary attributes. The difference
between them was small because at moderate pairwise
correlation (ρ = 0.4), as we had shown that Imma Sort and
SAW had similar |PI| (see Fig. 6). The difference should be
more pronounced for negative pairwise correlations.

In summary, Imma Sort provided a predictive inter-
pretability that was upper-bounded by Single Sort (better
lower |PI| than the unpreferred attributed and |PI| capped
at as good as the preferred attribute) and is mostly better
than SAW for varying attribute correlation, attribute prefer-
ence weight, list length, and number of attributes.

5.4 Simulation Experiments with Real Data

We used two real-world datasets — Airbnb6 and USDA
Food Nutrition7 — to evaluate Imma Sort performance
in the real-world applications. Specifically, we studied the

3. Since our analysis of datasets (Fig. 9) found that attributes tended
to be negatively correlated, and we chose a moderate correlation
strength; strong correlations would only need single sort (Fig. 6), and no
correlation provided the least information for multi-attribute sorting.

4. Moderately imbalanced between (0.5, 0.5) and (1, 0).
5. It was difficult to simulate data having more than two attributes

with pairwise negative correlation, since not all pairwise correlations
can be negative. So we simulated with positive moderate correlation.

6. http://insideairbnb.com/get-the-data.html
7. https://fdc.nal.usda.gov/
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decreased (better interpretability) with increasing list length.
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Fig. 8: Prediction interval width |PI| converges with (a)
increasing number of attributes for Imma Sort and (b) for
less prioritized attributes for all sort techniques.

correlations of combinations of attributes for typical sort use
cases to evaluate how predictable the sort results would be.

5.4.1 Airbnb data
We collected the Airbnb dataset of New York City (NYC),
which contains 48,800 Airbnb rooms with location and price.
Rather than sort over all items, we simulated the use case
of retrieving subsets of 100 relevant items that are nearest to
one of the top 100 tourist attractions8 in NYC. For simplicity,
we computed relevance using an equally-weighted (i.e.,
v1 = v2 = 0.5) SAW based on utility of min-max normalized
short distance and low prices. Since price and distance are
conflicting attributes, as expected, most of the item subsets
had negative attribute correlations (ρ = −0.9 to −0.5, see
Fig. 9(a)). We sorted each subset of items using Imma Sort
and three baselines, SAW, ByA1 (distance) and ByA2 (price).
For simplicity, we set equal attribute preference weights for
Imma Sort and SAW. Fig. 10(a) shows the prediction interval
width (|PI|) of the four techniques, showing that Imma Sort
improved ease of prediction for both attributes — distance
and price — compared to baseline techniques for sorting
rental items from the Airbnb dataset. Thus, Imma Sort
is well-suited for the use case of sorting accommodations
based on the conflicting attributes of distance and price.

5.4.2 USDA Food Nutrition Data
We collected the Food Nutrition dataset from the USDA
National Nutrient Database containing 320K food products
in 223 categories (cereal, yogurt, etc.). We focused on the top
20 categories, and 3 to 11 most common nutrition facts (car-
bohydrate, protein, etc.)9 as the attributes to sort by in each
category. We simulated the use case of retrieving subsets
of 50 relevant items (highest utility) in the same category.

8. https://www.google.com/travel/
9. We define a common nutrient by checking whether more than half

of the food products in that category have the nutrient recorded.
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(a) Airbnb Rentals (b) USDA Food Nutrition

Fig. 9: Distribution of correlation between pairwise at-
tributes of item subsets real-world datasets. Most lists had
negative correlations for which Imma Sort is well-suited.
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Fig. 10: Prediction interval widths |PI| for different sort
techniques on real-world datasets. Imma Sort had smaller
|PI| than SAW, and good compromise compared to ByA1
and ByA2. Error bar indicates standard error.

We computed a healthiness utility as the equally-weighted
sum of normalized attributes (e.g., low carbohydrates, high
proteins, high fiber, low fats). For evaluation, we sorted
items by combinations of two attributes. This resulted in
590 sorted subsets. We found that most attribute pairs were
negatively correlated (Fig. 9(b)). Fig. 10(b) shows that Imma
Sort improved ease of prediction (lower |PI|) compared
to SAW for both attributes, and compared to ByA1 for
Attribute 2 and ByA2 for Attribute 1. Therefore, Imma Sort
is well-suited to present users with the most predictively
interpretable multi-attribute sorted results.

5.5 Implications from simulation results

Our simulation experiments with synthetic datasets found
that, for all the sort techniques, ease of prediction is highly
influenced by attribute correlations, but marginally influ-
enced by list length and number of attributes. Consequently,
in our user studies (Section 7), we chose attribute corre-
lation as one of the key independent variables, but fixed
list length and number of attributes throughout the user
studies. Comparing between sort techniques, we found that
Imma Sort had the lowest prediction interval width |PI|
among sort techniques (naturally, except ByA1 for Attribute
1 or ByA2 for Attribute 2) across the factors of attribute
correlation, list length, and number of attributes. It retains
low |PI| for long lists of items with few attributes that
were moderately correlated. Our simulation experiments
with two real datasets found that typical lists have attributes
that are negatively correlated for which Imma Sort also had
a balanced and lowest |PI| compared to the other baseline
techniques. Although promising, these results are based on
simulated human ability, so we validate them in user studies
of prediction and search tasks, which we describe later in
Section 7. Next, we discuss how using Imma Sort can help
make searching among items more intuitive.

(a) By Imma Sort (b) By SAW

Fig. 11: Example cereal food items sorted by (a) Imma Sort
and (b) SAW. The width of each nutrient column represents
smoothness preference weight (Imma Sort) or importance
(SAW). The length of each bar within each column rep-
resents the relative nutrient amount. A healthier item has
higher fiber and protein, and lower carbohydrates. Yellow
highlight indicates item with best utility (anchor) and blue-
green highlight indicates plausible final user-selected item.

6 USAGE SCENARIOS FOR SEARCH TASK

With two usage scenarios with different comparisons, we
now discuss how the improved ease of prediction when
using Imma Sort, as evidenced from our simulation studies,
can help to improve user navigation intuition, search expe-
rience and performance. This drives our hypotheses for our
quantitative user study (described in the next section).

6.1 Choosing Airbnb rooms: Imma Sort vs. Single Sort

Consider the user task to find a rental from the Airbnb
database that simultaneously has the lowest price and short-
est distance to a tourist attraction. After an initial query, the
retrieved items are typically sorted by decreasing relevance
(e.g., by some utility score). However, despite this relevance
sort, users still regularly sort by a single attribute, e.g., price
(See Fig. 2(b)). Then, the user will start from the item with
lowest price (left to right), but continue to look at items
with higher price, because she desires a shorter distance too.
However, for the single-sorted list, the distance attribute is
randomly sorted, so she may have to keep looking farther
until the price gets too high.

In contrast, using an Imma Sorted list (Fig. 2(a)), the
user can see that as price approximately increases, distances
approximately decreases. Although neither attribute is per-
fectly monotonic by the sort order, it is still easy for the user
to perceive the increasing and decreasing trends in price and
distance, respectively. While scanning from lowest price (left
to right), unlike single sort, the user may conclude her search
earlier by perceiving both distance and price trends. She can
stop quickly if she feels that the distance will not decrease
further to her desired level as she sees the price increasing.

6.2 Choosing healthy foods: Imma Sort vs. SAW

Consider the user task to find a breakfast cereal food item
that is healthy (higher fiber and protein but lower carbo-
hydrates) from a list of 25 items. We discuss two ways to
find a satisfying item using Imma Sort and SAW. For a more
complex demonstration, we sort with three attributes, and
define healthiness as a weighted importance of 0.4, 0.4, and
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0.2 on min-max normalized values for fiber, protein, and
carbohydrate, respectively. We computed the utility score as
this weighted sum, which is also used for SAW. While Imma
Sort does not model relative importance for utility, it models
the relative preference for monotonicity for interpretability.
For comparison, we use the same weights for importance
as for monotonicity preference. Since this scenario is more
complex, we visualize the items and attribute values in a
spreadsheet similar to LineUp [3] (Fig. 11). This demon-
strates that while LineUp used SAW for sorting, Imma Sort
can be substituted to improve interpretability.

Using a SAW sorted list (Fig. 11(b)), the user will scan
from the top few items that are the healthiest based on
total utility scores. Suppose she desires higher fiber than
the top recommendation (Ground Flaxseed). She will search
downward for an alternative item at the cost of lower utility
score. However, the three attributes, especially fiber, are in
a messy order. Searching downward, she identifies that the
4th, 6th and 7th items have much higher fiber, but much
lower protein. The spikes and dives of nutrient levels are
confusing, making it hard to compare alternatives. She may
have to haphazardly search upward and downward. This
lowers the search satisfaction, compared to Imma Sort, as
we measured in our user study described later.

In contrast, using an Imma Sorted list (Fig. 11(a)) the
user can see approximately that as fiber decreases, protein
increases and carbohydrates decreases. These trends are
determined by inherent correlations between the attributes
in the data instead of the user’s utility of each attribute.
Although healthier items may not be near the top, each
nutrient would be more intuitively sorted and predictable.
To enable the user to search from the highest utility item
(Ground Flaxseed), the list highlights the best item anchor
with yellow color. From this starting location, the user looks
upward and sees increasing fiber and carbohydrates, but
decreasing protein, and vice versa. She can easily compare
adjacent or nearby items to decide whether she is willing
to compromise with higher/lower fiber, carbohydrate or
protein. She can intuitively see that as fiber incrementally
increases, this is slightly traded-off by clear decrease in pro-
tein and increase in carbohydrates. Without searching too
far, she settles for the item two positions above (Wheat Bran
Cereal highlighted in blue-green in Fig. 11(a)). While this
item is only ranked 13 by SAW, note that SAW does not fully
model the user’s preference, since weighted-sum utility is
just an estimate, and thus can be somewhat inaccurate. In
contrast, Imma Sort can support more flexible and intuitive
search, thus improving the sorted list user experience.

7 EVALUATION: USER STUDIES

We conducted two quantitative user studies to evaluate user
performance in prediction and search tasks using Imma
Sort compared to three baseline techniques. We further con-
ducted a qualitative think aloud study to deeply understand
how users perceived and used various sort techniques and
why they found them helpful or confusing.

7.1 User Study 1: Prediction Task
To quickly search and compare items on a sorted list, users
should be able to predict attribute values of items to reduce

confusion when finding unexpected values. Our first user
study evaluates how well Imma Sort (Imma) supports users
to predict the next item after seeing a partially sorted list,
compared to baseline sort techniques: SAW, and Single
Sort ByA1 or ByA2. We describe the experiment procedure,
variables, hypotheses, statistical analysis, and results.

7.1.1 Experiment Apparatus and Procedure
We tasked participants to view items in a sorted list of
12 items and predict attribute values for its last item, i.e.,
the prediction task. Items were randomly sampled from the
Airbnb dataset, and each hotel was represented by a generic
hotel icon and the two attributes: distance to downtown
and price per night. We used the same icon instead of
hotel images to represent all the hotels in order to avoid
confounds due to in branding and imagery. The list is laid
out horizontally due to the compactness of each item, such
that users navigate left and right. To test user prediction,
we concealed the distance and price of the last hotel in the
list and asked participants to predict their values. Instead of
asking for point estimates of each attribute value, we used
the “balls and bins” question [53] to more richly measure the
participants’ uncertainty about their predicted value. This
equally divides the possible range of values into 12 bins,
and asks participants to assign 100 points across these bins
to indicate the likelihood they think the value would be in
each bin. The experiment apparatus was implemented in
Qualtrics and deployed online.

Participants followed the procedure: 1) After consenting
to the study, the participant is randomly assigned to one
of four sort techniques. 2) She completes a pre-study ques-
tionnaire about her weighted attribute preference, study a
tutorial about the experiment task and the sort technique,
and take a screening quiz that she needs to pass to continue.
3) Next, she proceeds to the main survey with 5 trials of
different lists to predict values for 2 attributes. For each
trial, she sees a list of 12 hotels and is asked to predict
the distance and price of the last hotel. 4) She concludes
with a post-study questionnaire asking about the prediction
ease with the sorted list, how she made her prediction in an
open-ended text description, and demographic questions.

7.1.2 Experiment Design and Variables
We conducted a 4 × 5 mixed design study with Technique
and attribute Correlation as independent variables (IV).
IV: Technique (Imma, SAW, ByA1, ByA2) was arranged
between-subjects to avoid learning effects and minimize
fatigue. IV: Correlation (Spearman’s correlation coefficient
ρ = −0.7,−0.4, 0, 0.4, 0.7) was arranged within-subjects to
reduce variance due to individuals, and randomly ordered
so participants could not anticipate the predictability of lists
between trials. We held constant as control variables (CV):
number of attributes d = 2, list length n = 12, and attribute
preference weight w1 = w2 = v1 = v2 = 0.510. With two
attributes, we had the random variable RV: Attribute as A1
or A2. A1 refers to each participant’s preferred attribute, and
A2 the less preferred one; ByA1 and ByA2 refers to sorting
by each attribute, respectively. We selected lists of items

10. This was similar to participant preferences which were slightly
imbalanced (wprice = 0.54 and wdistance = 0.46, see Appendix).
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from the simulation experiment with Airbnb data, with
three lists per Correlation level (15 lists). We used the same
set of items across Techniques for controlled comparison.

For each Attribute, we measured dependent variables
(DV) regarding the participant’s prediction of the attribute
values of the final item. DV: Prediction Error measures
the inaccuracy of the participant’s prediction based on her
”balls and bins” response, i.e., |x̄− x|, where x is the actual
attribute value, x̄ =

∑n
i=1 pibi is the participant’s mean

estimated value, pi is the likelihood (number of points out of
100) assigned to the ith bin, and bi is the middle value of the
bin. All values are normalized by the minimum and maxi-
mum values in the list. DV: Prediction Standard Deviation
(SD) measures how uncertain the participant was about
her prediction based on her ”balls and bins” response, i.e.,
sd =

√∑n
i=1 pi(bi − x̄)2. DV: Prediction Time measures

time taken to predict both attribute values. We analyzed
its logarithmic transform, i.e., Log(Prediction Time), since
Prediction Time had a skewed distribution, as is typical. DV:
Prediction Ease measures perceived ease to use the sorted
item to predict the final item as a rating on a 7-point Likert
scale (−3=Strongly Disagree, 0=Neither, 3=Strongly Agree).

7.1.3 Hypotheses
We hypothesized that Imma can help human predictions
be more accurate (H1), more certain (H2), faster (H3), and
easier (H4) than SAW and ByA2. We expected ByA1 to
always outperform the other three techniques in terms of
all DVs because the primary attribute A1 is perfectly sorted.

7.1.4 Results and Statistical Analysis
We recruited 158 participants from Amazon Mechanical
Turk (MTurk) with high qualification (at least 5000 com-
pleted HITs with ≥ 97% approval rate). Participants were
45.6% female, between 20 and 77 years old (M=39). We
excluded 71/229 participants who failed the screening ques-
tions. Participants were randomly assigned into one of four
Technique conditions: Imma, n=39; SAW, n=37; ByA1, n=34;
ByA2, n=48. Participants completed the study in 6 to 57
minutes (Mean=26) and were compensated USD $2.00.

To validate prediction interval width (|PI|) as an estima-
tion for perceived predictive interpretability, we calculated
the Spearman correlation11 between them (see Table 1).
Participants perceived that attributes with lower |PI| were
easier to predict (moderate correlation), and could predict
with prediction error (moderate correlation), more certainty
(weak correlation with Prediction SD) and somewhat more
quickly (weak correlation with Prediction Time).

We fit a multivariate linear mixed effects model on
multiple dependent variables with fixed effects Technique
and Correlation, interaction effect Correlation × Technique,
and random effects Participant and Trial Sequence nested
in Correlation. We performed Tukey HSD tests at α = .005
on fixed effects that were notable. Fig. 12 summarizes the
results and we report significant effects at p ≤ .005. Predic-
tion Error and Prediction SD were both lower for participants
using Imma than SAW and ByA2, and similar to ByA1
(both DVs, Tukey HSD: 2 groups). This is consistent with

11. We used Spearman correlation to handle nonlinear relationships
between numeric and ordinal variables.

TABLE 1: Correlation between prediction interval width
|PI| and measures of predictive interpretability.

Prediction
Error

Prediction
SD

Prediction
Time

Prediction
Ease

Spearman ρPI 0.453 0.285 0.121 -0.561
Prob > |ρPI | < .0001 < .0001 < .0001 < .0001

-0.7 -0.4 0 0.4 0.7

-0.7 -0.4 0 0.4 0.7
Correlation

-0.7 -0.4 0 0.4 0.7

-0.7 -0.4 0 0.4 0.7

Fixed Effects P > F
Technique (T) <.0001*
Correlation n.s.
Correlation ✕ T <.0001*

Technique (T) <.0001*
Correlation 0.0360
Correlation ✕ T <.0001*

Technique (T) .0012*
Correlation n.s.
Correlation ✕ T n.s.

Technique (T) <.0001*
Correlation 0.0034*
Correlation ✕ T <.0001*
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Fig. 12: Results from User Study 2 on sorted list prediction
task. Error bars indicate 95% confidence interval. * indicates
statistically significant result at p ≤ .005.

our simulation results regarding prediction interval width
|PI| (Fig. 6), although here ByA1 was not better than Imma.
Prediction Time was similar for Imma and SAW (p = n.s.)
and not statistically distinguishable from ByA1 or ByA2, but
participants were faster with ByA1 than ByA2 (p = .0006).
Prediction Ease was rated positively and highest for ByA1,
followed by Imma, but rated equally negatively for SAW
and ByA2 (Tukey HSD: 3 groups). Moderately negative
correlated (ρ = −0.4) lists had lowest ease, but only sig-
nificantly lower than strongly positive correlated (ρ = 0.7)
lists (Tukey HSD: 2 groups).

From their written descriptions, participants reported
that they perceived strong increasing or decreasing trends
when using Imma for lists with strong attribute correlations
(ρ = −0.7, 0.7). P25 wrote “For the most part the prices were
decreasing so I put a price that was one the low side of the listed
prices.” P71 felt that :“the distance doesn’t fluctuate that much
and it is quite steady in the range before going up a bit.” In
contrast, participants struggled to find trends using SAW.
For example, P157 “looked for a trend. I didn’t find a trend
so I spread out my prediction.”; P83 randomly guessed “since
all the numbers are all over the place.” When reading lists of
items with weak and no correlations (−0.4 ≤ ρ ≤ 0.4),
participants could still perceive a trend using Imma. For
example, even for a list with no correlation (ρ = 0), P71
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mentioned that “it seemed in line with the upward trend in the
list.” Conversely, participants using SAW could not report
any trend, e.g., P215 wrote “I picked a middle number because
there is no pattern.” Participants using ByA1 reported that
they found a clear trend, unlike those using ByA2.

7.1.5 Summary and Implications

In summary, we found moderate correlations which validate
that |PI| can be used to estimate predictive interpretability
based on several measures. Participants found Imma Sort
more predictable than SAW and ByA2, providing improved
prediction ease, confidence, and accuracy. ByA1 was easier
to use than Imma Sort, but both had similar predictability.
These results are consistent with our hypotheses H1, H2
and H4. Hypothesis H3 was only partially satisfied since
predicting with Imma was not faster than with SAW.

7.2 User Study 2: Searching Task

Having validated that Imma Sort improves ease of predic-
tion when browsing the lists, our second user study further
evaluated whether the improvement in human predictabil-
ity could help users make a better selections. We describe the
second study’s experiment procedure, variables, hypothe-
ses, statistical analysis, and results.

7.2.1 Experiment Apparatus and Procedure

We introduced participants about a scenario to find a low-
priced hotel that is close to the downtown of a city. We
tasked them to select a hotel from a sorted list of 21 hotels
that best satisfies her weighted preference between price
and distance, i.e., the search task. We used the same list in-
terface as User Study 1. Each participant followed the same
procedure as in User Study 1, except for the main survey,
where she performed 5 search task trials. In the post-study
questionnaire, she rates her satisfaction and helpfulness of
using the sorted list for search. To encourage conscientious
search, we incentivised participants with a US$0.50 bonus
to be given to the top 10% of participants whose selections
were closest to the best item with the highest utility score
based on her stated attribute weighted preferences.

7.2.2 Experiment Design and Variables

We conducted a 5 × 5 mixed design study with the same
independent variables (IVs), Technique and attribute Cor-
relation, but with slight additions. IV: Technique (Imma,
ImmaCenter, SAW, ByA1, ByA2) adds a variant of Imma
Sort, ImmaCenter. Imma shows the list starting from the
front, but ImmaCenter starts from the best item position. It
is more suitable for lists with negative attribute correlation,
since the best item is positioned somewhere in the center.
ImmaCenter can be more efficient for search, but may be
confusing due to its unconventional positioning. The best
item has highest utility score based on preference weights.
For SAW, it is at the front; for all other sort techniques, it
can be anywhere after the front. IV: Correlation: (same as
User Study 1). We held constant as control variables (CV):

number of attributes d = 2, list length12 n = 21, and
preference weight as (w1 = v1 = 0.46, w2 = v2 = 0.54)13.

For each Attribute, we measured dependent variables
(DV) regarding the participant’s search performance and
opinions. DV: Closeness to Best Selection measures the
relative nearness between the positions ls and l̂ of partici-
pant’s selected item and her personal best item, respectively.
Her personal best item is the item with highest utility
score based on her stated preference weights. We calculated
Closeness as 1 − |ls − l̂|/n, where n is the list length
to normalize the metric. DV: Selection Satisfaction and
DV: Helpfulness measure perceived satisfaction with the
selected item and helpfulness of the sort order for the search
task, respectively; both measured on a 7-point Likert scale.

7.2.3 Hypotheses
We hypothesized that participants would: (H5) select items
closer to their personal best with ImmaCenter than Imma
and ByA2, but similarly close as SAW because ImmaCenter
and SAW initially show the best item in view; (H6) be more
satisfied with ImmaCenter than SAW due to its improved
intuitiveness; (H7) find Imma and ImmaCenter more helpful
than SAW due to clearer trends in attributes; and (H8) report
higher satisfaction and helpfulness for lists with positively
correlated attributes than negatively correlated ones.

7.2.4 Results and Statistical Analysis
We recruited 279 participants from Amazon Mechanical
Turk with the high qualification as User Study 1. Partic-
ipants were 44.8% female, between 20 and 77 years old
(Mean=40). We excluded 132 participants (out of 411) who
failed the screening questions at the pre-survey. Participants
were randomly assigned into one of five Technique condi-
tions: Imma, n=56; ImmaCenter, n=56; SAW, n=56; ByA1,
n=62; ByA2, n=49. Participants completed the study in 4 to
32 minutes (Mean=17) and were compensated USD $1.50.

While we found moderate evidence that prediction in-
terval width |PI| influenced predictive interpretability, its
effect on search performance was weaker. We calculated the
Spearman correlation between |PI| and dependent vari-
ables (see Table 2). We found that |PI| had a weak and
negative correlation with Helpfulness but no correlation
with Closeness to Best Selection and Satisfaction. This lack
of relation could be due to additional, unmeasured factors
that drove Satisfaction and imprecise or evolving user pref-
erence of attributes than what was elicited. Nevertheless,
hypothesis testing on sort techniques found some effects.

We fit a multivariate linear mixed effects model on
multiple dependent variables with fixed effects Technique
and Correlation, interaction effect Correlation × Technique,
and random effects Participant and Trial Sequence nested
in Correlation. We performed Tukey HSD tests at α = .005

12. To provide more challenge for the search task, since n = 12 of the
prediction task would be too easy.

13. Preference weights selected from average preferences measured
from participants in User Study 1 (see Appendix). Using average pref-
erence is common practice in many real-world ranking applications [10]
due to the impracticality of eliciting preference for every new user.
Consequently, the average “best” item may not be the personal best for
the participant, causing some variability in where the personal highest
utility item is placed and necessitating the user to search around.
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TABLE 2: Correlation between prediction interval width
|PI|, and search performance and user experience.

Closeness to
Best Selection Satisfaction Helpfulness

Spearman ρPI -0.034 -0.040 -0.131
Prob > |ρPI | n.s. n.s. < .0001
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Fig. 13: Results from User Study 2 on sorted list search
task. Error bars indicate 95% confidence interval. * indicates
statistically significant result at p ≤ .005.

on fixed effects that were notable. Fig. 13 summarizes the
results and we report significant effects at p ≤ .005. Close-
ness to Best Selection was higher when using ImmaCenter
(ImmaC), ByA1 and SAW than using Imma or ByA2 (Tukey
HSD: 2 groups). Participants made better selections from
the lists with strong positive correlation (ρ = 0.7), than
lists with moderately positive or no correlations (ρ = 0.4
or ρ = 0), and made the worst selections using lists with
negative correlations (Tukey HSD: 3 groups). Selection Satis-
faction was higher with ImmaCenter, Imma and ByA2 than
SAW and ByA1 (Tukey HSD: 2 groups), and higher for lists
with positive attribute correlations than lists with moderate
negatively correlation (contrast test: p < .0001). Helpfulness
was highest for ByA1 and ByA2, followed by ImmaCenter
and Imma, and SAW was least helpful (Tukey HSD: 3
groups). All sorting was most helpful for lists with strong
positive attribute correlation, but least helpful for lists with
moderate negative correlation (contrast test, p < .0001).

7.2.5 Summary and Implications

In summary, ImmaCenter, ByA1 and SAW helped users
make better selections (closer to best item) than ByA2 and
Imma. Participants rated ImmaCenter as more helpful than
SAW, and were more satisfied in their selections with Im-
maCenter than ByA1. As expected, participants performed
better on lists with positive attributes correlations than with
negative correlations, especially moderate negative correla-
tions. Thus, these results are consistent with our hypotheses
H5 to H8. We found that ImmaCenter supports the best
search performance and satisfaction and is rated helpful.

7.3 User Study 3: Qualitative Think Aloud Study

Since Imma Sort and its variants (ImmaAnchor, ImmaCen-
ter) are new interactions, we conducted qualitative user
studies to understand its user experience and learnability.
We investigated whether users navigated quickly from start-
ing positions to the best item, and around the best item.

7.3.1 Procedure and Method
We asked participants to perform the same hotel search task
as in the previous user study, each time for two of five differ-
ent sort techniques: SAW, single sort (SingleSort), single sort
with highlighted best item (SingleAnchor), ImmaAnchor,
and ImmaCenter. We excluded Imma Sort without anchor
to focus on studying the usage of the anchor. We tested on
two lists of 21 hotels with strong and moderate negative
correlations (ρ = −0.7 and −0.4, respectively). We asked
participants to think aloud while searching and ended with
a structured interview about their experience and rationale.

We recruited 8 participants (4 male, 4 female) between
24 and 30 years old. All were graduate students with varied
backgrounds in social science, medicine, geography, com-
puter science, and electronic engineering. All had experi-
ence with on-line shopping and were comfortable with list
user interfaces. Unlike the between-subjects arrangement in
the quantitative study, in the qualitative study, participants
used 3-4 sort techniques (within-subjects), so that we could
understand their relative opinions. We divided the 8 partici-
pants into two groups: 4 participants used and compared
SingleSort, SingleAnchor, ImmaAnchor and ImmaCenter,
while the others used and compared SAW, ImmaAnchor
and ImmaCenter. This enabled us to compare Imma Sort
variants with Single Sort and SAW, respectively. We used
the same average preference weights for SAW and Imma
Sort variants as in the quantitative search task study, thus
the participant’s personal best item may not be at the front
in SAW or be the anchor item in ImmaAnchor/ImmaCenter.

7.3.2 Findings
We organized our findings into key insights that partici-
pants: 1) mostly did not trust or prefer SAW, 2) quickly
navigated to the best item (anchor) with SingleAnchor or
ImmaAnchor then compared around the anchor, 3) were
comfortable starting their search from the center of a list at
the anchor, and 4) preferred ImmaCenter to ImmaAnchor.

(1) Distrust of SAW. With SAW, although items were
sorted by average preference-based utility, participants
mostly scanned the list to search for hotels with short dis-
tances and low prices, and had difficulty comparing items.
P5 “[could] not tell the logic behind the sorting [SAW]”, because
she did not like the first item, and wanted to compare its
price and distance with other items. With SAW, she found
it “difficult as I need to compare a lot of times” and felt it was
necessary to “re-sort the list again by price”. Preferring to use
ImmaAnchor instead of SAW, P6 could “easily find the hotels
within some distance”, and could “easily compare prices of these
hotels because price also has some trend”.

(2) Quick navigation to anchor then compare nearby.
Participants used the additional information in SingleAn-
chor to focus their comparison around the best item anchor.
Having navigated to the anchor, P1 “liked that [the anchor]
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provided a baseline for comparison” and would “look around
the hotels with slightly different price and distance”. The anchor
helped P2 to easily filter many hotels that were “obviously not
better than the highlighted hotel”. Using ImmaAnchor, partici-
pants quickly navigated to the anchor and examined items
around it without searching farther down, since they could
tell that distance would keep increasing as price decreased.
P8 was “attracted to the highlighted item” and perceived it as a
“meaningful compromise between distance and price”. Although
P8 “usually likes to pick the top ranked items” from online
recommendations, after a few trials using ImmaAnchor, he
realized “this sorting convinced me to choose [the anchor] or
similar ones around it, because now I know why it is better than
others”. P3 felt the clear trends in ImmaAnchor helped him
to “quickly locate candidates and compare between them”. P4 pre-
ferred ImmaAnchor to SingleAnchor, because both prices
and distances were closely comparable with ImmaAnchor,
while only price was easily comparable with SingleAchor
and she had to “jump around to compare” distance.

(3) Focused navigation around anchor when starting
from center. With ImmaAchor, the anchor item was at a
middle position (around positions 8-13 in a list of 21 items)
which was not always in visible range (9-item span) from
the front (left) position, thus participants would have had to
navigate far from the front to notice it. Using ImmaCenter,
starting from the center, participants would quickly scan
left to the front, return to the center anchor, and quickly
scan to the near right (not to the end). This suggests some
limited trust in starting from the center, but participants
were mostly verifying the trend between the front item and
anchor and did so quickly. Eventually, participants felt little
need to examine items far from the anchor: P5 “realized that
there was a trend, so I think the left most and right most are not
what I liked, so I just focus on the hotels in the middle of the list”
and P2 could “tell that to the left [of the anchor], the price is
increasing, [and] to the right, the distance is also increasing, so no
need to see the left-end or right-end”. Thus, ImmaCenter helped
participants to skip searching items near the front and they
appreciated starting near the anchor in the center.

(4) Preference to start searching from the middle an-
chor. Participants generally preferred ImmaCenter over Im-
maAnchor. Only P7 felt that not starting from the front item
“looks weird”. P1, P2, P4, and P6 felt that seeing a “baseline
[anchor] in the beginning” could help them to “quickly filter
the hotels” that were obviously not as good as the anchor to
“save time”. Furthermore, P2 and P3 did not like the anchor
“to be placed far at the back of the list” (as with ImmaAnchor),
out of visible range. Indicating his preference, P8 mentioned
that “after a few trials [of using ImmaAnchor], I found that the
hotels I liked are always around the highlighted one, so I jumped to
[it] directly” and that ImmaCenter “saves this extra jump and
helps me to see the highlighted hotel directly.” Thus, participants
felt comfortable to start searching from the anchor placed in
the center of the list to jumpstart their item comparisons.

In summary, participants appreciated the clear trends
in Imma Sort to allow for close comparisons around the
best item anchor. This makes Imma Sort more predictively
interpretable than SAW that does not show clear trends. Par-
ticipants became accustomed to using ImmaCenter to start
from the center after realizing that searching among front
items was less useful than searching around the anchor.

8 DISCUSSION AND DESIGN IMPLICATIONS

We have demonstrated the usage, usability, and usefulness
of Imma Sort for sorting multiple attributes with mock
up use cases, simulation experiments and user studies to
improve predictive interpretability, search satisfaction and
search performance. To promote its adoption, we discuss
why, when, where, and how to deploy Imma Sort for real-
world applications, and the limitations.

Why to use. Despite the intuitiveness of score-based
recommendation ranked lists and attribute-weighted rank-
ing (e.g., Simple Additive Weighting), users still often re-
sort the pre-ranked items to perform careful comparisons to
search for their personal best item. This demonstrates a lack
of intuitiveness in utility-based ranking. For example, SAW
appears simple because its algorithm to sort is simple, but
its sorted list result is typically not simple. Our qualitative
study found that users may not trust such sorted results
because of the unclear relationship between attributes and
the ranking. In contrast, Imma Sort prioritizes presenting
items in a simple sort result which users experience, albeit
with a more complex sorting technique which is transparent
(hidden) to users, and which can be provided to program-
mers via an application programming interface (API). Our
quantitative user studies showed that Imma Sort had bet-
ter usability (Satisfaction and Helpfulness) than SAW. Our
qualitative user study showed that participants appreciated
the clear trends due to the predictive interpretability pro-
vided by Imma Sort. Therefore, compared to SAW, Imma
Sort improves the user experience (UX) for searching a
sorted list without compromising search performance.

When to use. As expected, Imma Sort improved the
users’ predictive interpretability on multiple attributes and
helps to improve user search satisfaction, which is useful
for cases, such as helping e-commerce consumers to find
products from a list of alternatives. Imma Sort will be useful
1) to enhance one-attribute sorting to multiple attributes, for
lightweight comparisons (vs. intensive spreadsheet analy-
ses), 2) for items which could have conflicting attributes,
and 3) when users have personalized preferences regarding
the importance or interpretability of different attributes.

Where to use. Imma Sort can be integrated into many
real-world applications, such as recommendation systems
and search engines that deal with multi-attribute items. It
can help by rearranging the recommended items or search
results to be more intuitive and predictively interpretable to
lower the cognitive load of multi-attribute decision making.
Imma Sort can be especially useful for mobile apps because
it takes less space by showing only one list, compared to
large spreadsheets [3], filtering menus [1], or other interac-
tive graphical user interface (GUI) elements [21].

How to use. Imma Sort can be added to existing sort
user interfaces, such as recommendation list and search
results, by adding a new sort mode control interface and
displaying items in the original list layout. For correlated
attributes, it can be used similarly to one-attribute sorted
lists. For conflicting attributes, we recommend highlighting
the best item anchor (ImmaAnchor) to encourage users to
quickly navigate to the anchor to compare. Once users get
more experience, ImmaCenter can be used to “jumpstart”
users to the best item anchor and avoid the initial navigation
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from front to best item. ImmaCenter may be more intuitively
laid out in a horizontal list with small item cards, which is
presently popular in mobile and web interfaces (e.g., Netflix
video browsing and Google local search). The horizontal
list supports unbiased left-right navigation from the center,
unlike vertical lists that drive navigation downwards.

Limitations. Imma Sort provides smoother trends for
lists with conflicting attributes (ρ < 0), but not significantly
for lists with uncorrelated attributes (ρ ≈ 0). Nevertheless,
we found from our analysis of real-world datasets that
most lists have negative attribute correlations (see Fig. 9).
Imma Sort requires attribute preferences weights to be spec-
ified. This can be elicited from users, or a default choice
can be provided from average preferences as we have
done in the search task user study. Nonetheless, specify-
ing attribute weights is a common requirement for multi-
attribute sort, such as SAW. Imma Sort implementation is
somewhat sophisticated, unlike single sort or SAW, but not
necessarily more than recommendation models based on
machine learning. These are typically implemented in back-
end servers, and transparent to front-end developers. We
open source14 the Imma Sort code as a simple API library
to help promote its adoption. Hence, programming to use
Imma Sort is not necessarily more complex than using SAW-
like utility ranked recommender systems.

9 CONCLUSION AND FUTURE WORK

We have introduced the notion of predictive interpretability
to identify intuitiveness issues in sorted list results. With
this insight, we identified requirements for multi-attribute
sorting. We presented Imma Sort to sort items by multiple
attributes simultaneously by trading-off the monotonicity
in the primary sorted attribute to increase the approxi-
mate monotonicity for other attributes. We extended the
Ranking Principle Curve model to tune approximate mono-
tonic trends for multiple attributes and prioritize smoother,
smaller fluctuations for specific attributes based on prefer-
ence weights. We demonstrated the usefulness and usability
of Imma Sort with application use cases, and a qualitative
think aloud study. We validated its improvement in overall
prediction interval in simulation experiments with synthetic
and real-world data, and its benefit to human predictiveness
and search performance in two user studies.

Our work is the first to rigorously study the usability of
multi-attribute sort and identified the importance to support
predictive interpretability. While Imma Sort presents a novel
capability to sort items for interpretability, it raises several
potential challenges, such as perceiving some uncertainty
in the sort order and not having the estimated best item
at the front of the list. While we found early evidence for
the user acceptance of Imma Sort despite these concerns,
future work could investigate the usage of Imma Sort in the
wild and in longitudinal studies with deployed mobile and
web apps. Having proposed a nascent, novel interaction,
we expect future research to provide further refinements to
Imma Sort to ameliorate these concerns [54], and drive more
commonplace and more interpretable use of multi-attribute
sorting.

14. https://github.com/nus-ubicomplab/imma-sort
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APPENDIX A
A.1 Principal Curve Algorithm

Algorithm 1 Principal Curve Algorithm for I’mma Sort

Input: A set of data points X , monotonicity index α and
weight w

Output: Four control points P , and a sorting of X
1: Normalize each xi ∈ [0, 1]d, 1 ≤ i ≤ n
2: Initialize P (0): p(0)

0 = 1
2
(1−α), p(0)

3 = 1
2
(1 +α)

3: Randomly generate p(0)
1 ,p

(0)
2 ∈ [0, 1]d

4: Initialize ∆ =∞, t = 1
5: while ∆ > δ do
6: s

(t−1)
i = argmin

0≤s≤1

√∑d
a=1 wa(xi,a − f(s, P (t−1))a)2

7: P (t) = argmin
(p1,p2)

∑n
i=1

∑d
a=1 wa(xi,a − f(s

(t−1)
i , P )a)2.

8: ε(t) =
∑n

i=1 ||xi − f(s
(t−1)
i , P (t))||2

9: ∆ = |ε(t) − ε(t−1)|
10: t = t+ 1
11: end while
12: P = P (t), si = argmin0≤s≤1

∑n
i=1 ||xi − f(s, P )||

13: Sort X based on their projection positions si, 1 ≤ i ≤ n

Algorithm 1 depicts the principal curve algorithm [6][49]
to find the best Bézier curve f(s, P ) for data points X =
{x1,x2, ...,xn} with control points P = {p0,p1,p2,p3}
and position index s. The algorithm considers the mono-
tonicity index α = (α1, α2, ..., αd)T to specify increasing
(αa = 1) or decreasing (αa = −1) trends, and preference
weights w = (w1, w2, ..., wd)T on d attributes as input
to allow users to indicate smoothness preference for each
attribute a ∈ [1, d]. It firstly normalizes attribute values of
each data point into the range [0, 1], and initializes the four
control points with α and randomization: p0 = (1 − α)/2
and p3 = (1 + α)/2 are determined by α to constrain the
increasing or decreasing trend of each attribute; p1 and p2
are randomly selected from [0, 1]d (Algorithm 1 Lines 2-3).

The algorithm iteratively adjusts control points p1 and
p2 to fit the curve that minimizes the total distance of all
data points to their projections on the curve (Eq. 6), i.e.,

ε =
∑n

i=1

∑d

a=1
wa(xi,a − f(si, P )a)2,

where xi,a is the ath attribute of the ith data point, and
f(si, P )a denotes the ath dimension of Bézier curve and
refers to the projection of the ath attribute. For each iteration
t, two steps are performed:

Step 1. For each data point xi, calculate projection
position si on the curve from the last iteration (Eq. 7,
Algorithm 1 Line 6), i.e.,

s
(t−1)
i = argmin

0≤s≤1

√∑d

a=1
wa(xi,a − f(s, P (t−1))a)2.

Step 2. Adjust the control points p1 and p2 by minimiz-
ing the sum of distance between each data point xi and its
the projection f(s

(t−1)
i , P ) (Algorithm 1 Line 7). , i.e.,

P (t) = argmin
(p

(t)
1 ,p

(t)
2 )

n∑
i=1

d∑
a=1

wa(xi,a − f(s
(t−1)
i , P )a)2.

In each iteration, P (t) should satisfy the monotonicity
constraints, i.e., Eqs. 4 and 5. The algorithm terminates when

the distance difference between iterations ∆ = |ε(t)−ε(t−1)|
is less than a threshold δ (Algorithm 1 Line 9). The final sum
of distances ε(t) is a local minimum. After projecting data
X to the final Bézier curve, the sorting arrangement of X
can be determined based on the sequence of each of their
projections si on the final curve.

A.2 Distribution of |PI| for Imma Sort
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(c) w1 = 0.7, w2 = 0.3
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(e) w1 = 0.5, w2 = 0.5

Fig. A1: Distribution of attribute |PI| for different corre-
lations ρ and different preference weights for Imma Sort.
As the preference weight for Attribute 1 decreased, the
|PI| of Attribute 1 increased while that of Attribute 2
decreased. |PI| becomes binomial when w1 = w2 = 0.5
and −0.6 ≤ ρ ≤ 0.6.

A.3 Distribution of preference weights
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Fig. A2: Distributions of user preference weights collected
from User Study 1 for distance weight (Mean=0.54, SD=0.21)
and price weight (Mean=0.46, SD=0.21).


	ImmaTVCG
	ImmaTVCG_Appendix

